36-94 GHz Gaas混频器二极管燃烬机制

A. Christou, Y. Anand
{"title":"36-94 GHz Gaas混频器二极管燃烬机制","authors":"A. Christou, Y. Anand","doi":"10.1109/IRPS.1980.362930","DOIUrl":null,"url":null,"abstract":"GaAs Schottky barrier diodes fabricated with different high temperature barrier metals were investigated for CW and pulse burnout. The (TiW-Au)-GaAs, (Ti-Mo-Au)-GaAs, and Pd-GaAs diodes, optimized for 36-94 GHz operation were studied in a multi-junction configuation. The burnout mechanism was characterized by a gradual degradation in noise figure. The physical mechanism consisted of a degradation of metal-GaAs interface by the creation of Ga vacancles in the epitaxial layer and a decrease in GaAs mobility. Pulse burnout at X-band consisted of rapid metal punchthrough and catastrophic failure but with a gradual degradation in noise figure. An optimum CW burnout level of 2.0-2.5 watts was obtained with a thermal compression bonded (TiW-Au)-GaAs mixer diode at 36 GHz.","PeriodicalId":270567,"journal":{"name":"18th International Reliability Physics Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gaas Mixer Diode Burnout Mechanisms at 36-94 GHz\",\"authors\":\"A. Christou, Y. Anand\",\"doi\":\"10.1109/IRPS.1980.362930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaAs Schottky barrier diodes fabricated with different high temperature barrier metals were investigated for CW and pulse burnout. The (TiW-Au)-GaAs, (Ti-Mo-Au)-GaAs, and Pd-GaAs diodes, optimized for 36-94 GHz operation were studied in a multi-junction configuation. The burnout mechanism was characterized by a gradual degradation in noise figure. The physical mechanism consisted of a degradation of metal-GaAs interface by the creation of Ga vacancles in the epitaxial layer and a decrease in GaAs mobility. Pulse burnout at X-band consisted of rapid metal punchthrough and catastrophic failure but with a gradual degradation in noise figure. An optimum CW burnout level of 2.0-2.5 watts was obtained with a thermal compression bonded (TiW-Au)-GaAs mixer diode at 36 GHz.\",\"PeriodicalId\":270567,\"journal\":{\"name\":\"18th International Reliability Physics Symposium\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Reliability Physics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS.1980.362930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.1980.362930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了用不同的高温势垒金属制备的GaAs肖特基势垒二极管的连续烧蚀和脉冲烧蚀性能。在多结结构下研究了36-94 GHz工作优化的(TiW-Au)-GaAs、(Ti-Mo-Au)-GaAs和Pd-GaAs二极管。燃尽机制的特点是噪声系数逐渐降低。其物理机制包括金属-砷化镓界面的退化,外延层中产生了砷化镓空位,并降低了砷化镓的迁移率。x波段脉冲烧断主要表现为金属快速击穿和灾难性失效,但噪声系数逐渐降低。采用36ghz的热压缩键合(TiW-Au)-GaAs混频器二极管,获得了2.0-2.5瓦的最佳连续烧烬水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaas Mixer Diode Burnout Mechanisms at 36-94 GHz
GaAs Schottky barrier diodes fabricated with different high temperature barrier metals were investigated for CW and pulse burnout. The (TiW-Au)-GaAs, (Ti-Mo-Au)-GaAs, and Pd-GaAs diodes, optimized for 36-94 GHz operation were studied in a multi-junction configuation. The burnout mechanism was characterized by a gradual degradation in noise figure. The physical mechanism consisted of a degradation of metal-GaAs interface by the creation of Ga vacancles in the epitaxial layer and a decrease in GaAs mobility. Pulse burnout at X-band consisted of rapid metal punchthrough and catastrophic failure but with a gradual degradation in noise figure. An optimum CW burnout level of 2.0-2.5 watts was obtained with a thermal compression bonded (TiW-Au)-GaAs mixer diode at 36 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromigration Resistance of Fine-Line Al for VLSI Applications Effects of Silicon Nitride Encapsulation on MOS Device Stability Reliability Analysis of Several Conductors at High Current Densities for use in Bubble Memories Reliability Testing and Evaluation of Magnetic Bubble Memories for Electronic Switching Systems Electromigration Failure in Hieavily Doped Polycrystalline Silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1