发现学习行为模式,预测 MOOC 的辍学率

Bowei Hong, Zhiqiang Wei, Yongquan Yang
{"title":"发现学习行为模式,预测 MOOC 的辍学率","authors":"Bowei Hong, Zhiqiang Wei, Yongquan Yang","doi":"10.1109/ICCSE.2017.8085583","DOIUrl":null,"url":null,"abstract":"High dropout rate of MOOC is criticized while a dramatically increasing number of learners are appealed to these online learning platforms. Various works have been done on analysis and prediction of dropout. Machine learning techniques are widely applied to this field. However, a single classifier may not always perform reliable for predictions. In this work, we study dropout prediction for MOOC. A technique is proposed to predict dropouts using learning activity information of learners. We applied a two-layer cascading classifier with a combination of three different machine learning classifiers — Random Forest (RF), Support Vector Machine (SVM), and MultiNomial Logistic Regression (MLR) for prediction. Experimental results indicate that the technique is promising in predicting dropouts with achieving 97% precision.","PeriodicalId":256055,"journal":{"name":"2017 12th International Conference on Computer Science and Education (ICCSE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Discovering learning behavior patterns to predict dropout in MOOC\",\"authors\":\"Bowei Hong, Zhiqiang Wei, Yongquan Yang\",\"doi\":\"10.1109/ICCSE.2017.8085583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dropout rate of MOOC is criticized while a dramatically increasing number of learners are appealed to these online learning platforms. Various works have been done on analysis and prediction of dropout. Machine learning techniques are widely applied to this field. However, a single classifier may not always perform reliable for predictions. In this work, we study dropout prediction for MOOC. A technique is proposed to predict dropouts using learning activity information of learners. We applied a two-layer cascading classifier with a combination of three different machine learning classifiers — Random Forest (RF), Support Vector Machine (SVM), and MultiNomial Logistic Regression (MLR) for prediction. Experimental results indicate that the technique is promising in predicting dropouts with achieving 97% precision.\",\"PeriodicalId\":256055,\"journal\":{\"name\":\"2017 12th International Conference on Computer Science and Education (ICCSE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Computer Science and Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2017.8085583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Computer Science and Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2017.8085583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在吸引越来越多的学习者使用这些在线学习平台的同时,MOOC 的高辍学率也饱受诟病。关于辍学率的分析和预测,人们已经做了很多工作。机器学习技术被广泛应用于这一领域。然而,单一分类器的预测结果并不总是可靠的。在这项工作中,我们研究了 MOOC 的辍学预测。我们提出了一种利用学习者的学习活动信息来预测辍学率的技术。我们将随机森林(RF)、支持向量机(SVM)和多项式逻辑回归(MLR)这三种不同的机器学习分类器结合起来,应用双层级联分类器进行预测。实验结果表明,该技术在预测辍学率方面大有可为,准确率达到 97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering learning behavior patterns to predict dropout in MOOC
High dropout rate of MOOC is criticized while a dramatically increasing number of learners are appealed to these online learning platforms. Various works have been done on analysis and prediction of dropout. Machine learning techniques are widely applied to this field. However, a single classifier may not always perform reliable for predictions. In this work, we study dropout prediction for MOOC. A technique is proposed to predict dropouts using learning activity information of learners. We applied a two-layer cascading classifier with a combination of three different machine learning classifiers — Random Forest (RF), Support Vector Machine (SVM), and MultiNomial Logistic Regression (MLR) for prediction. Experimental results indicate that the technique is promising in predicting dropouts with achieving 97% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A unified approach to automate the usage of plagiarism detection tools in programming courses Software verification of Orion cockpit displays Wine quality identification based on data mining research A comparison of inertial-based navigation algorithms for a low-cost indoor mobile robot A HCI design for developing touch-operation-based DGS: What you think is what you get
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1