基于TiO2纳米颗粒的AlN湿度传感器性能分析

A. Fort, E. Panzardi, V. Vignoli, Elia Landi, M. Mugnaini, C. Trigona
{"title":"基于TiO2纳米颗粒的AlN湿度传感器性能分析","authors":"A. Fort, E. Panzardi, V. Vignoli, Elia Landi, M. Mugnaini, C. Trigona","doi":"10.1109/IWMN.2019.8805004","DOIUrl":null,"url":null,"abstract":"This paper shows the feasibility of a novel humidity sensor based on a low frequency micromachined electromechanical resonator functionalized with nanoparticles of TiO2. Immunity to the non-idealities of the conditioning electronic components was obtained by means of a low frequency resonator. In addition, this method was also applied in order to minimize the degradation of the resonator quality due to the deposition of the sensing material. The experimental results obtained using an ad-hoc characterization system show that this solution is viable and that the sensor has satisfactory performance in a large humidity range. It is worth noting that the proposed system can be used for structural health monitoring and novel measurements architecture.","PeriodicalId":272577,"journal":{"name":"2019 IEEE International Symposium on Measurements & Networking (M&N)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance Analysis of an AlN Humidity Sensor based on TiO2 nanoparticles\",\"authors\":\"A. Fort, E. Panzardi, V. Vignoli, Elia Landi, M. Mugnaini, C. Trigona\",\"doi\":\"10.1109/IWMN.2019.8805004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the feasibility of a novel humidity sensor based on a low frequency micromachined electromechanical resonator functionalized with nanoparticles of TiO2. Immunity to the non-idealities of the conditioning electronic components was obtained by means of a low frequency resonator. In addition, this method was also applied in order to minimize the degradation of the resonator quality due to the deposition of the sensing material. The experimental results obtained using an ad-hoc characterization system show that this solution is viable and that the sensor has satisfactory performance in a large humidity range. It is worth noting that the proposed system can be used for structural health monitoring and novel measurements architecture.\",\"PeriodicalId\":272577,\"journal\":{\"name\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2019.8805004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2019.8805004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文展示了一种基于TiO2纳米粒子功能化的低频微机械机电谐振器的新型湿度传感器的可行性。通过低频谐振器获得了对调节电子元件非理想性的抗扰度。此外,为了最大限度地减少由于传感材料的沉积而导致的谐振器质量的下降,也应用了这种方法。实验结果表明,该方案是可行的,传感器在较大湿度范围内具有满意的性能。值得注意的是,该系统可用于结构健康监测和新的测量架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of an AlN Humidity Sensor based on TiO2 nanoparticles
This paper shows the feasibility of a novel humidity sensor based on a low frequency micromachined electromechanical resonator functionalized with nanoparticles of TiO2. Immunity to the non-idealities of the conditioning electronic components was obtained by means of a low frequency resonator. In addition, this method was also applied in order to minimize the degradation of the resonator quality due to the deposition of the sensing material. The experimental results obtained using an ad-hoc characterization system show that this solution is viable and that the sensor has satisfactory performance in a large humidity range. It is worth noting that the proposed system can be used for structural health monitoring and novel measurements architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Novel Measurement Technique for Emulating Real Life Environment within a Semi Reverberating Chamber Indoor Location Services through Multi-Source Learning-based Radio Fingerprinting Techniques Passive Peak Voltage Sensor for Multiple Sending Coils Inductive Power Transmission System Evaluation of Machine Learning Algorithms for Anomaly Detection in Industrial Networks A measurement procedure for the optimization of a distributed indoor localization system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1