尖峰神经网络中带有尖峰计数的STDP学习的早期终止

Sunghyun Choi, Jongsun Park
{"title":"尖峰神经网络中带有尖峰计数的STDP学习的早期终止","authors":"Sunghyun Choi, Jongsun Park","doi":"10.1109/ISOCC50952.2020.9333061","DOIUrl":null,"url":null,"abstract":"Spiking neural network (SNN) is considered as one of the most promising candidates for designing neuromorphic hardware due to its low power computing capability. Since SNNs are made from imitating features of the human brain, bio-plausible spike-timing-dependent plasticity (STDP) learning rule can be adjusted to perform unsupervised learning of SNN. In this paper, we present a spike count based early termination technique for STDP learning in SNN. To reduce redundant timesteps and calculations, spike counts of output neurons can be used to terminate the training process beforehand, thus latency and energy can be decreased. The proposed scheme reduces 50.7% of timesteps and 51.1% of total weight update during training with 0.35% accuracy drop in MNIST application.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early Termination of STDP Learning with Spike Counts in Spiking Neural Networks\",\"authors\":\"Sunghyun Choi, Jongsun Park\",\"doi\":\"10.1109/ISOCC50952.2020.9333061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural network (SNN) is considered as one of the most promising candidates for designing neuromorphic hardware due to its low power computing capability. Since SNNs are made from imitating features of the human brain, bio-plausible spike-timing-dependent plasticity (STDP) learning rule can be adjusted to perform unsupervised learning of SNN. In this paper, we present a spike count based early termination technique for STDP learning in SNN. To reduce redundant timesteps and calculations, spike counts of output neurons can be used to terminate the training process beforehand, thus latency and energy can be decreased. The proposed scheme reduces 50.7% of timesteps and 51.1% of total weight update during training with 0.35% accuracy drop in MNIST application.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9333061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9333061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脉冲神经网络(SNN)由于其低功耗的计算能力而被认为是最有前途的神经形态硬件设计候选之一。由于SNN是模仿人类大脑的特征,因此可以调整生物似是而非的spike- time -dependent plasticity (STDP)学习规则来实现SNN的无监督学习。在本文中,我们提出了一种基于尖峰计数的SNN中STDP学习的早期终止技术。为了减少冗余的时间步长和计算,可以使用输出神经元的峰值计数来提前终止训练过程,从而降低延迟和能量。在MNIST应用中,该方案在训练过程中减少了50.7%的时间步长和51.1%的总权重更新,准确率下降了0.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Termination of STDP Learning with Spike Counts in Spiking Neural Networks
Spiking neural network (SNN) is considered as one of the most promising candidates for designing neuromorphic hardware due to its low power computing capability. Since SNNs are made from imitating features of the human brain, bio-plausible spike-timing-dependent plasticity (STDP) learning rule can be adjusted to perform unsupervised learning of SNN. In this paper, we present a spike count based early termination technique for STDP learning in SNN. To reduce redundant timesteps and calculations, spike counts of output neurons can be used to terminate the training process beforehand, thus latency and energy can be decreased. The proposed scheme reduces 50.7% of timesteps and 51.1% of total weight update during training with 0.35% accuracy drop in MNIST application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1