利用财经新闻预测股票收益:一种基于分层注意和长短期记忆网络的统一序列模型

Haoling Chen, Peng Liu
{"title":"利用财经新闻预测股票收益:一种基于分层注意和长短期记忆网络的统一序列模型","authors":"Haoling Chen, Peng Liu","doi":"10.1109/CONF-SPML54095.2021.00034","DOIUrl":null,"url":null,"abstract":"Stock return prediction has been a hot topic in both research and industry given its potential for large financial gain. The return signal, apart from its inherent volatility and complexity, is often accompanied by a multitude of noises, such as other stocks’ performance, macroeconomic factors and financial news, etc. To better characterize these factors, we propose a new model that consists of two levels of sequence: an NLP-based module to capture the sequential nature of words and sentences in the financial news, and a time-series-based module to exploit the sequential nature of adjacent observations in the stock price. In this proposed framework, we employ Hierarchical Attention Networks (HAN) in the text mining module, which could effectively model the financial news and extract important signals at both word and sentence level. For the time series module, the established Long-Short Term Memory (LSTM) network is used to model the complex serial dependence in the time series data. We compare with benchmark models using either module alone, as well as other alternatives using the traditional Bag of Words (BOW) approach, based on the Dow Jones Industrial Average (DJIA) dataset. Experiment results show that our proposal method performs better in several classification metrics for both positive and negative stock returns.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock Return Prediction using Financial News: A Unified Sequence Model based on Hierarchical Attention and Long-Short Term Memory Networks\",\"authors\":\"Haoling Chen, Peng Liu\",\"doi\":\"10.1109/CONF-SPML54095.2021.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock return prediction has been a hot topic in both research and industry given its potential for large financial gain. The return signal, apart from its inherent volatility and complexity, is often accompanied by a multitude of noises, such as other stocks’ performance, macroeconomic factors and financial news, etc. To better characterize these factors, we propose a new model that consists of two levels of sequence: an NLP-based module to capture the sequential nature of words and sentences in the financial news, and a time-series-based module to exploit the sequential nature of adjacent observations in the stock price. In this proposed framework, we employ Hierarchical Attention Networks (HAN) in the text mining module, which could effectively model the financial news and extract important signals at both word and sentence level. For the time series module, the established Long-Short Term Memory (LSTM) network is used to model the complex serial dependence in the time series data. We compare with benchmark models using either module alone, as well as other alternatives using the traditional Bag of Words (BOW) approach, based on the Dow Jones Industrial Average (DJIA) dataset. Experiment results show that our proposal method performs better in several classification metrics for both positive and negative stock returns.\",\"PeriodicalId\":415094,\"journal\":{\"name\":\"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONF-SPML54095.2021.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

股票收益预测由于其潜在的巨大经济收益,一直是研究和行业的热门话题。收益信号除了其固有的波动性和复杂性外,还经常伴随着大量的噪音,如其他股票的表现、宏观经济因素和金融新闻等。为了更好地表征这些因素,我们提出了一个由两层序列组成的新模型:一个基于nlp的模块,用于捕获金融新闻中单词和句子的顺序性质;一个基于时间序列的模块,用于利用股票价格中相邻观察的顺序性质。在本文提出的框架中,我们在文本挖掘模块中使用了层次注意网络(HAN),可以有效地对财经新闻建模,并在单词和句子级别提取重要信号。对于时间序列模块,采用建立的长短期记忆(LSTM)网络对时间序列数据中的复杂序列依赖性进行建模。我们比较了单独使用任何一个模块的基准模型,以及基于道琼斯工业平均指数(DJIA)数据集使用传统的词袋(BOW)方法的其他替代方法。实验结果表明,我们的方法在股票正收益和负收益的几个分类指标上都有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stock Return Prediction using Financial News: A Unified Sequence Model based on Hierarchical Attention and Long-Short Term Memory Networks
Stock return prediction has been a hot topic in both research and industry given its potential for large financial gain. The return signal, apart from its inherent volatility and complexity, is often accompanied by a multitude of noises, such as other stocks’ performance, macroeconomic factors and financial news, etc. To better characterize these factors, we propose a new model that consists of two levels of sequence: an NLP-based module to capture the sequential nature of words and sentences in the financial news, and a time-series-based module to exploit the sequential nature of adjacent observations in the stock price. In this proposed framework, we employ Hierarchical Attention Networks (HAN) in the text mining module, which could effectively model the financial news and extract important signals at both word and sentence level. For the time series module, the established Long-Short Term Memory (LSTM) network is used to model the complex serial dependence in the time series data. We compare with benchmark models using either module alone, as well as other alternatives using the traditional Bag of Words (BOW) approach, based on the Dow Jones Industrial Average (DJIA) dataset. Experiment results show that our proposal method performs better in several classification metrics for both positive and negative stock returns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-stage Adaptive Weight-adjusting Interference Cancellation Demodulation Technology Based on SLIC and CWIC for NOMA Stabilization with the Idea of Notch Filter in Automatic Control System Remote Sensing Image Classification Methods Based on CNN: Challenge and Trends An Overview of Recommender Systems and Its Next Generation: Context-Aware Recommender Systems Manifold Guided Graph Neural Networks for Skeleton-based Action Recognition in Human Computer Interaction Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1