基于HSV、HSL和HSI色彩空间的视频人脸检测方法比较

S. Elaw, W. Abd-Elhafiez, M. Heshmat
{"title":"基于HSV、HSL和HSI色彩空间的视频人脸检测方法比较","authors":"S. Elaw, W. Abd-Elhafiez, M. Heshmat","doi":"10.1109/ICCES48960.2019.9068182","DOIUrl":null,"url":null,"abstract":"this paper presents, new face detection methods based on HSL and HSI color spaces are presented. A comparison of the new face detection methods and a new HSV skin color range is presented. The three color spaces are based on: H, S, V, L, and I, whose represent Hue, Saturation, Value, Luminance and Intensity respectively. YouTube Celebrities Face Tracking and Recognition Dataset is used. It contains 1910 sequences of 47 subjects. All dataset videos are encoded in MPEG4 at 25fps rate. The proposed methods based on two main steps, at the beginning, the skin like regions is detected by the gradient values of the proposed color space. According to main facial features, such as eyes, mouth and nose the desired faces are determined from the recommended regions. According to experimental results, HSV color space gives good results in lighten_faces, HSL color space gives good results for multi_faces and HSI color space gives good results for single_faces and zoomed_faces videos.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Video Face Detection methods Using HSV, HSL and HSI Color Spaces\",\"authors\":\"S. Elaw, W. Abd-Elhafiez, M. Heshmat\",\"doi\":\"10.1109/ICCES48960.2019.9068182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper presents, new face detection methods based on HSL and HSI color spaces are presented. A comparison of the new face detection methods and a new HSV skin color range is presented. The three color spaces are based on: H, S, V, L, and I, whose represent Hue, Saturation, Value, Luminance and Intensity respectively. YouTube Celebrities Face Tracking and Recognition Dataset is used. It contains 1910 sequences of 47 subjects. All dataset videos are encoded in MPEG4 at 25fps rate. The proposed methods based on two main steps, at the beginning, the skin like regions is detected by the gradient values of the proposed color space. According to main facial features, such as eyes, mouth and nose the desired faces are determined from the recommended regions. According to experimental results, HSV color space gives good results in lighten_faces, HSL color space gives good results for multi_faces and HSI color space gives good results for single_faces and zoomed_faces videos.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了基于HSL和HSI颜色空间的人脸检测新方法。对新的人脸检测方法和新的HSV肤色范围进行了比较。这三个色彩空间基于:H、S、V、L和I,分别代表Hue、Saturation、Value、Luminance和Intensity。使用YouTube名人面部跟踪和识别数据集。它包含47个主题的1910个序列。所有数据集视频都以25fps的速率以MPEG4编码。该方法主要分为两个步骤:首先,利用所提出的颜色空间的梯度值检测类皮肤区域;根据主要的面部特征,如眼睛、嘴巴和鼻子,从推荐的区域确定理想的脸。实验结果表明,HSV色彩空间对lighten_faces具有较好的效果,HSL色彩空间对multi_faces具有较好的效果,HSI色彩空间对single_faces和zoomed_faces具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Video Face Detection methods Using HSV, HSL and HSI Color Spaces
this paper presents, new face detection methods based on HSL and HSI color spaces are presented. A comparison of the new face detection methods and a new HSV skin color range is presented. The three color spaces are based on: H, S, V, L, and I, whose represent Hue, Saturation, Value, Luminance and Intensity respectively. YouTube Celebrities Face Tracking and Recognition Dataset is used. It contains 1910 sequences of 47 subjects. All dataset videos are encoded in MPEG4 at 25fps rate. The proposed methods based on two main steps, at the beginning, the skin like regions is detected by the gradient values of the proposed color space. According to main facial features, such as eyes, mouth and nose the desired faces are determined from the recommended regions. According to experimental results, HSV color space gives good results in lighten_faces, HSL color space gives good results for multi_faces and HSI color space gives good results for single_faces and zoomed_faces videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1