{"title":"网络物理数字微流控生物芯片的快速在线故障恢复","authors":"C. Jaress, P. Brisk, D. Grissom","doi":"10.1109/VTS.2015.7116246","DOIUrl":null,"url":null,"abstract":"Microfluidic technologies offer benefits to the biological sciences by miniaturizing and automating chemical reactions. Software-controlled laboratories-on-a-chip (LoCs) execute biological protocols (assays) specified using high-level languages. Integrated sensors and video monitoring provide a closed feedback loop between the LoC and its control software, which provide timely information about the progress of an ongoing assay and the overall health of the LoC. This paper introduces a cyber-physical control algorithm that rectifies hard and soft faults that are detected dynamically while executing an assay on a digital microfluidic biochip (DMFB), one specific LoC technology. The approach is scalable (i.e., there is no fixed limit on the number of faults that may occur), and runs efficiently in practice, thereby limiting the performance overhead incurred when a hard or soft fault occurs during assay execution.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Rapid online fault recovery for cyber-physical digital microfluidic biochips\",\"authors\":\"C. Jaress, P. Brisk, D. Grissom\",\"doi\":\"10.1109/VTS.2015.7116246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microfluidic technologies offer benefits to the biological sciences by miniaturizing and automating chemical reactions. Software-controlled laboratories-on-a-chip (LoCs) execute biological protocols (assays) specified using high-level languages. Integrated sensors and video monitoring provide a closed feedback loop between the LoC and its control software, which provide timely information about the progress of an ongoing assay and the overall health of the LoC. This paper introduces a cyber-physical control algorithm that rectifies hard and soft faults that are detected dynamically while executing an assay on a digital microfluidic biochip (DMFB), one specific LoC technology. The approach is scalable (i.e., there is no fixed limit on the number of faults that may occur), and runs efficiently in practice, thereby limiting the performance overhead incurred when a hard or soft fault occurs during assay execution.\",\"PeriodicalId\":187545,\"journal\":{\"name\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2015.7116246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid online fault recovery for cyber-physical digital microfluidic biochips
Microfluidic technologies offer benefits to the biological sciences by miniaturizing and automating chemical reactions. Software-controlled laboratories-on-a-chip (LoCs) execute biological protocols (assays) specified using high-level languages. Integrated sensors and video monitoring provide a closed feedback loop between the LoC and its control software, which provide timely information about the progress of an ongoing assay and the overall health of the LoC. This paper introduces a cyber-physical control algorithm that rectifies hard and soft faults that are detected dynamically while executing an assay on a digital microfluidic biochip (DMFB), one specific LoC technology. The approach is scalable (i.e., there is no fixed limit on the number of faults that may occur), and runs efficiently in practice, thereby limiting the performance overhead incurred when a hard or soft fault occurs during assay execution.