F. Kato, S. Sato, H. Hozoji, M. Ikegawa, A. Sakai, K. Watanabe, S. Harada, H. Sato
{"title":"栅极板布局对SiC-MOSFET热阻抗的影响","authors":"F. Kato, S. Sato, H. Hozoji, M. Ikegawa, A. Sakai, K. Watanabe, S. Harada, H. Sato","doi":"10.23919/ICEP55381.2022.9795453","DOIUrl":null,"url":null,"abstract":"In this paper, thermal impedance (Zth) of power modules which is assembled with a silicon carbide Schottky barrier diode (SiC-SBD) and metal oxide semiconductor field effect transistor (SiC-MOSFET) was measured and compared. SiC-MOSFETs had gate pads that accounted for 6% of the die size. SiC-MOSFETs had up to 55% higher thermal impedance and 13% higher steady-state thermal resistance compared to SiC-SBDs. Although the gate pad occupies only a small area in the device chip, it was found to have a significant difference on the thermal impedance of SiC power modules, especially in the short time region.","PeriodicalId":413776,"journal":{"name":"2022 International Conference on Electronics Packaging (ICEP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Gate Pad Layout on Thermal Impedance of SiC-MOSFET\",\"authors\":\"F. Kato, S. Sato, H. Hozoji, M. Ikegawa, A. Sakai, K. Watanabe, S. Harada, H. Sato\",\"doi\":\"10.23919/ICEP55381.2022.9795453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, thermal impedance (Zth) of power modules which is assembled with a silicon carbide Schottky barrier diode (SiC-SBD) and metal oxide semiconductor field effect transistor (SiC-MOSFET) was measured and compared. SiC-MOSFETs had gate pads that accounted for 6% of the die size. SiC-MOSFETs had up to 55% higher thermal impedance and 13% higher steady-state thermal resistance compared to SiC-SBDs. Although the gate pad occupies only a small area in the device chip, it was found to have a significant difference on the thermal impedance of SiC power modules, especially in the short time region.\",\"PeriodicalId\":413776,\"journal\":{\"name\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electronics Packaging (ICEP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICEP55381.2022.9795453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics Packaging (ICEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICEP55381.2022.9795453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Gate Pad Layout on Thermal Impedance of SiC-MOSFET
In this paper, thermal impedance (Zth) of power modules which is assembled with a silicon carbide Schottky barrier diode (SiC-SBD) and metal oxide semiconductor field effect transistor (SiC-MOSFET) was measured and compared. SiC-MOSFETs had gate pads that accounted for 6% of the die size. SiC-MOSFETs had up to 55% higher thermal impedance and 13% higher steady-state thermal resistance compared to SiC-SBDs. Although the gate pad occupies only a small area in the device chip, it was found to have a significant difference on the thermal impedance of SiC power modules, especially in the short time region.