用于电动交通的锂离子电池技术——最先进的方案

Nagmani, Debanjana Pahari, Ashwani Tyagi, Dr. Sreeraj Puravankara
{"title":"用于电动交通的锂离子电池技术——最先进的方案","authors":"Nagmani, Debanjana Pahari, Ashwani Tyagi, Dr. Sreeraj Puravankara","doi":"10.37285/ajmt.1.2.10","DOIUrl":null,"url":null,"abstract":"Rechargeable batteries are an integral part of all types of electric vehicles (EVs). Batteries must contain higher energy-power densities and longer cycle life for an EV system. Lead-acid batteries, Nickel-metal hydride batteries, and Lithium-ion batteries (LIBs) have been employed as charge storage in EV systems to date. Lead-acid batteries and Nickel-metal hydride batteries were deployed in EVs by General Motors in 1996. However, the low specific energy in Lead-acid batteries (34 Whkg-1) and high self-discharge (12.5% per day at r.t.) in Nickel-metal hydride batteries have marked these batteries obsolete in EV applications. LIBs currently occupy most of the EV market because of their high specific power (~130-220 Whkg-1) and a low selfdischarge rate (~5% per month). The current technological maturity and mass production in LIBs have reduced the overall battery cost by ~98% in the last three decades, reaching an average value of $140 kWh-1 in 2021. Although a game-changer in battery technologies, LIBs encounter various challenges: high cost, low safety, less reliability, and immature infrastructure despite environmental benignness. Overcharging and overheating of LIBs can cause thermal runway leading to fire hazards or explosion. Declining Liresources also raise concerns regarding the reliability and shelf-life of LIB technology. Hence, a critical assessment of Li-ion chemistries is essential to comprehend the potential of LIBs in electric mobilities and to realize the prospects in EVs.","PeriodicalId":294802,"journal":{"name":"ARAI Journal of Mobility Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lithium-Ion Battery Technologies for Electric Mobility – State-of-the-Art Scenario\",\"authors\":\"Nagmani, Debanjana Pahari, Ashwani Tyagi, Dr. Sreeraj Puravankara\",\"doi\":\"10.37285/ajmt.1.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable batteries are an integral part of all types of electric vehicles (EVs). Batteries must contain higher energy-power densities and longer cycle life for an EV system. Lead-acid batteries, Nickel-metal hydride batteries, and Lithium-ion batteries (LIBs) have been employed as charge storage in EV systems to date. Lead-acid batteries and Nickel-metal hydride batteries were deployed in EVs by General Motors in 1996. However, the low specific energy in Lead-acid batteries (34 Whkg-1) and high self-discharge (12.5% per day at r.t.) in Nickel-metal hydride batteries have marked these batteries obsolete in EV applications. LIBs currently occupy most of the EV market because of their high specific power (~130-220 Whkg-1) and a low selfdischarge rate (~5% per month). The current technological maturity and mass production in LIBs have reduced the overall battery cost by ~98% in the last three decades, reaching an average value of $140 kWh-1 in 2021. Although a game-changer in battery technologies, LIBs encounter various challenges: high cost, low safety, less reliability, and immature infrastructure despite environmental benignness. Overcharging and overheating of LIBs can cause thermal runway leading to fire hazards or explosion. Declining Liresources also raise concerns regarding the reliability and shelf-life of LIB technology. Hence, a critical assessment of Li-ion chemistries is essential to comprehend the potential of LIBs in electric mobilities and to realize the prospects in EVs.\",\"PeriodicalId\":294802,\"journal\":{\"name\":\"ARAI Journal of Mobility Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARAI Journal of Mobility Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37285/ajmt.1.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARAI Journal of Mobility Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ajmt.1.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可充电电池是所有类型的电动汽车(ev)的组成部分。对于电动汽车系统,电池必须具有更高的能量功率密度和更长的循环寿命。迄今为止,铅酸电池、镍氢电池和锂离子电池(LIBs)已被用于电动汽车系统的充电存储。1996年,通用汽车公司在电动汽车上部署了铅酸电池和镍氢电池。然而,铅酸电池的低比能量(34 Whkg-1)和镍氢电池的高自放电(每天在静止状态下自放电12.5%)使这些电池在电动汽车应用中已经过时。目前,锂离子电池以其高比功率(~130-220 Whkg-1)和低自放电率(~5% /月)占据了电动汽车市场的大部分。在过去的三十年里,目前锂电池的技术成熟度和大规模生产使电池的整体成本降低了98%,到2021年平均成本达到140千瓦时-1美元。虽然是电池技术的变革者,但锂电池面临着各种挑战:成本高、安全性低、可靠性差、基础设施不成熟等。锂电池的过充和过热可能导致热跑道导致火灾或爆炸危险。锂资源的减少也引起了人们对锂电池技术可靠性和保质期的担忧。因此,对锂离子化学进行批判性评估对于理解锂离子电池在电动汽车领域的潜力和实现其在电动汽车领域的前景至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lithium-Ion Battery Technologies for Electric Mobility – State-of-the-Art Scenario
Rechargeable batteries are an integral part of all types of electric vehicles (EVs). Batteries must contain higher energy-power densities and longer cycle life for an EV system. Lead-acid batteries, Nickel-metal hydride batteries, and Lithium-ion batteries (LIBs) have been employed as charge storage in EV systems to date. Lead-acid batteries and Nickel-metal hydride batteries were deployed in EVs by General Motors in 1996. However, the low specific energy in Lead-acid batteries (34 Whkg-1) and high self-discharge (12.5% per day at r.t.) in Nickel-metal hydride batteries have marked these batteries obsolete in EV applications. LIBs currently occupy most of the EV market because of their high specific power (~130-220 Whkg-1) and a low selfdischarge rate (~5% per month). The current technological maturity and mass production in LIBs have reduced the overall battery cost by ~98% in the last three decades, reaching an average value of $140 kWh-1 in 2021. Although a game-changer in battery technologies, LIBs encounter various challenges: high cost, low safety, less reliability, and immature infrastructure despite environmental benignness. Overcharging and overheating of LIBs can cause thermal runway leading to fire hazards or explosion. Declining Liresources also raise concerns regarding the reliability and shelf-life of LIB technology. Hence, a critical assessment of Li-ion chemistries is essential to comprehend the potential of LIBs in electric mobilities and to realize the prospects in EVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Performance Assessment of Sizing of Electric Motor through Analytical Approach for Electric Vehicle Application Study on Various Position Sensing Technologies in Tractor Hitch Application Algorithm based Calibration Strategies in an Electric Powertrain Impact of Fused Deposition Modeling Process Parameters and Heat Treatment on Mechanical Characteristics and Product Quality: A Review Experimental Assessment of Genset Performance for PCCI-DI Combustion Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1