{"title":"算法有限理性,最优性和噪声","authors":"C. Ioannou, Ioannis Nompel","doi":"10.1145/1807406.1807489","DOIUrl":null,"url":null,"abstract":"A model of learning, adaptation and innovation is used to simulate the evolution of Moore machines (executing strategies) in the repeated Prisoner's Dilemma stage-game. In contrast to previous simulations that assumed perfect informational and implementation accuracy, the agents' machines are prone to two types of errors: (a) action-implementation errors, and (b) perception errors. The impact of bounded rationality on the agents' machines is examined under different error-levels. The computations indicate that the incorporation of bounded rationality is sufficient to alter the evolutionary structure of the agents' machines. In particular, the evolution of cooperative machines becomes less likely as the likelihood of errors increases.","PeriodicalId":142982,"journal":{"name":"Behavioral and Quantitative Game Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithmic bounded rationality, optimality and noise\",\"authors\":\"C. Ioannou, Ioannis Nompel\",\"doi\":\"10.1145/1807406.1807489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model of learning, adaptation and innovation is used to simulate the evolution of Moore machines (executing strategies) in the repeated Prisoner's Dilemma stage-game. In contrast to previous simulations that assumed perfect informational and implementation accuracy, the agents' machines are prone to two types of errors: (a) action-implementation errors, and (b) perception errors. The impact of bounded rationality on the agents' machines is examined under different error-levels. The computations indicate that the incorporation of bounded rationality is sufficient to alter the evolutionary structure of the agents' machines. In particular, the evolution of cooperative machines becomes less likely as the likelihood of errors increases.\",\"PeriodicalId\":142982,\"journal\":{\"name\":\"Behavioral and Quantitative Game Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Quantitative Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1807406.1807489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Quantitative Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807406.1807489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithmic bounded rationality, optimality and noise
A model of learning, adaptation and innovation is used to simulate the evolution of Moore machines (executing strategies) in the repeated Prisoner's Dilemma stage-game. In contrast to previous simulations that assumed perfect informational and implementation accuracy, the agents' machines are prone to two types of errors: (a) action-implementation errors, and (b) perception errors. The impact of bounded rationality on the agents' machines is examined under different error-levels. The computations indicate that the incorporation of bounded rationality is sufficient to alter the evolutionary structure of the agents' machines. In particular, the evolution of cooperative machines becomes less likely as the likelihood of errors increases.