基于深度学习的早期森林火灾探测

Mengna Li, Youmin Zhang, Lingxia Mu, Jing Xin, Ziquan Yu, Han Liu, Guo Xie
{"title":"基于深度学习的早期森林火灾探测","authors":"Mengna Li, Youmin Zhang, Lingxia Mu, Jing Xin, Ziquan Yu, Han Liu, Guo Xie","doi":"10.1109/IAI53119.2021.9619342","DOIUrl":null,"url":null,"abstract":"Early fire detection is very important for preventing forest fires. In this paper, a new image-based fire detection algorithm, named as h-EfflcientDet, is proposed to complete the task of early forest fire detection. h-EfflcientDet is based on a popular deep learning approach EfficientDet (scalable and efficient object detection) by replacing the nonlinear activation function swish of the EfficientDet with the hard version of swish and combing also with an efficient feature fusion network BIFPN (bidirectional feature pyramid network), which can improve significantly the efficiency of the fire detection model. The experiment results show that the proposed h-EfficientDet can detect the fire in real-time with the detection speed of 21 FPS. The detection accuracy is up to 98.35% with a low miss detection rate.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Early Forest Fire Detection Based on Deep Learning\",\"authors\":\"Mengna Li, Youmin Zhang, Lingxia Mu, Jing Xin, Ziquan Yu, Han Liu, Guo Xie\",\"doi\":\"10.1109/IAI53119.2021.9619342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early fire detection is very important for preventing forest fires. In this paper, a new image-based fire detection algorithm, named as h-EfflcientDet, is proposed to complete the task of early forest fire detection. h-EfflcientDet is based on a popular deep learning approach EfficientDet (scalable and efficient object detection) by replacing the nonlinear activation function swish of the EfficientDet with the hard version of swish and combing also with an efficient feature fusion network BIFPN (bidirectional feature pyramid network), which can improve significantly the efficiency of the fire detection model. The experiment results show that the proposed h-EfficientDet can detect the fire in real-time with the detection speed of 21 FPS. The detection accuracy is up to 98.35% with a low miss detection rate.\",\"PeriodicalId\":106675,\"journal\":{\"name\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI53119.2021.9619342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

早期火灾探测对于预防森林火灾非常重要。本文提出了一种新的基于图像的火灾检测算法h-EfflcientDet,用于完成森林火灾的早期检测任务。h-EfflcientDet基于一种流行的深度学习方法effentdet(可扩展和高效的目标检测),将effentdet的非线性激活函数swish替换为swish的hard版本,并结合高效的特征融合网络BIFPN(双向特征金字塔网络),可以显著提高火灾检测模型的效率。实验结果表明,所提出的h-EfficientDet可以实时检测到火灾,检测速度为21 FPS。检测准确率高达98.35%,漏检率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early Forest Fire Detection Based on Deep Learning
Early fire detection is very important for preventing forest fires. In this paper, a new image-based fire detection algorithm, named as h-EfflcientDet, is proposed to complete the task of early forest fire detection. h-EfflcientDet is based on a popular deep learning approach EfficientDet (scalable and efficient object detection) by replacing the nonlinear activation function swish of the EfficientDet with the hard version of swish and combing also with an efficient feature fusion network BIFPN (bidirectional feature pyramid network), which can improve significantly the efficiency of the fire detection model. The experiment results show that the proposed h-EfficientDet can detect the fire in real-time with the detection speed of 21 FPS. The detection accuracy is up to 98.35% with a low miss detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on self-maintenance strategy of CNC machine tools based on case-based reasoning An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment Relative Stability Analysis Method of Systems Based on Goal Seek Operation Optimization of Park Integrated Energy System Considering the Response of Electricity and Cooling Demand Privacy-Preserving Push-sum Average Consensus Algorithm over Directed Graph Via State Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1