{"title":"微波用导电胶粘剂的特性和性能","authors":"J. Felba, K.P. Friedel, A. Moscicki","doi":"10.1109/ADHES.2000.860608","DOIUrl":null,"url":null,"abstract":"The main advantage of isotropically conductive adhesives used for assembling electronic circuits is lack of lead and other toxic metals in resultant joints. The objective of this paper was to find the best formulation of isotropically conductive adhesive for solder replacement in microwave applications. As a result of the screening experiment the different adhesive formulations were investigated in order to identify the significant factors, which influence the electrical resistance of joints. In these formulations the adhesive base material as well as type of main and additional filler materials were changed. Silver, nickel and graphite were used as a main filler material, whereas soot and heavy silver were filler additives. The adhesive formulations were tested in standard microstrip bandpass filters, which were supplied with an additional gap in the gold strip and bridged by adhesive bonded silver jumper. As the figure-of-merit the quality factor Q and loss L of such a microwave circuit have been investigated. Both the Q-factor and loss of the filter with bonded jumper were measured at the frequency of 3.5 GHz in preliminary experiment and at 3.5 GHz as well as 14 GHz in final experiment. For identifying the best adhesive formulation the experimental design method based on Taguchi techniques for quality engineering has been used. It was stated that to each adhesive, which is prepared on the base of specific type of resin, the strictly defined type of silver filler should be added and strictly defined volume content of the filler should be selected.","PeriodicalId":222663,"journal":{"name":"4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing. Proceedings. Presented at Adhesives in Electronics 2000 (Cat. No.00EX431)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Characterization and performance of electrically conductive adhesives for microwave applications\",\"authors\":\"J. Felba, K.P. Friedel, A. Moscicki\",\"doi\":\"10.1109/ADHES.2000.860608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main advantage of isotropically conductive adhesives used for assembling electronic circuits is lack of lead and other toxic metals in resultant joints. The objective of this paper was to find the best formulation of isotropically conductive adhesive for solder replacement in microwave applications. As a result of the screening experiment the different adhesive formulations were investigated in order to identify the significant factors, which influence the electrical resistance of joints. In these formulations the adhesive base material as well as type of main and additional filler materials were changed. Silver, nickel and graphite were used as a main filler material, whereas soot and heavy silver were filler additives. The adhesive formulations were tested in standard microstrip bandpass filters, which were supplied with an additional gap in the gold strip and bridged by adhesive bonded silver jumper. As the figure-of-merit the quality factor Q and loss L of such a microwave circuit have been investigated. Both the Q-factor and loss of the filter with bonded jumper were measured at the frequency of 3.5 GHz in preliminary experiment and at 3.5 GHz as well as 14 GHz in final experiment. For identifying the best adhesive formulation the experimental design method based on Taguchi techniques for quality engineering has been used. It was stated that to each adhesive, which is prepared on the base of specific type of resin, the strictly defined type of silver filler should be added and strictly defined volume content of the filler should be selected.\",\"PeriodicalId\":222663,\"journal\":{\"name\":\"4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing. Proceedings. Presented at Adhesives in Electronics 2000 (Cat. No.00EX431)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing. Proceedings. Presented at Adhesives in Electronics 2000 (Cat. No.00EX431)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADHES.2000.860608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing. Proceedings. Presented at Adhesives in Electronics 2000 (Cat. No.00EX431)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADHES.2000.860608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

用于组装电子电路的各向同性导电胶粘剂的主要优点是在接合处不含铅和其他有毒金属。本文的目的是寻找微波应用中焊料替代用各向同性导电胶粘剂的最佳配方。通过筛选实验,研究了不同胶粘剂配方对接头电阻的影响。在这些配方中,粘合剂基材以及主要和附加填充材料的类型都发生了变化。以银、镍和石墨为主要填料,烟灰和重银为填料添加剂。在标准微带带通滤波器中测试了胶粘剂配方,该标准微带带通滤波器在金带中提供了额外的间隙,并用胶粘剂粘合银跳线桥接。本文研究了该微波电路的质量因数Q和损耗L作为优值。初步实验在3.5 GHz频率下测量了带键合跳线滤波器的q因子和损耗,最终实验在3.5 GHz和14 GHz频率下测量了q因子和损耗。为了确定最佳胶粘剂配方,采用了基于田口质量工程技术的试验设计方法。对每一种以特定类型树脂为基础制备的胶粘剂,应加入严格规定的银填料类型,并选择严格规定的填料体积含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and performance of electrically conductive adhesives for microwave applications
The main advantage of isotropically conductive adhesives used for assembling electronic circuits is lack of lead and other toxic metals in resultant joints. The objective of this paper was to find the best formulation of isotropically conductive adhesive for solder replacement in microwave applications. As a result of the screening experiment the different adhesive formulations were investigated in order to identify the significant factors, which influence the electrical resistance of joints. In these formulations the adhesive base material as well as type of main and additional filler materials were changed. Silver, nickel and graphite were used as a main filler material, whereas soot and heavy silver were filler additives. The adhesive formulations were tested in standard microstrip bandpass filters, which were supplied with an additional gap in the gold strip and bridged by adhesive bonded silver jumper. As the figure-of-merit the quality factor Q and loss L of such a microwave circuit have been investigated. Both the Q-factor and loss of the filter with bonded jumper were measured at the frequency of 3.5 GHz in preliminary experiment and at 3.5 GHz as well as 14 GHz in final experiment. For identifying the best adhesive formulation the experimental design method based on Taguchi techniques for quality engineering has been used. It was stated that to each adhesive, which is prepared on the base of specific type of resin, the strictly defined type of silver filler should be added and strictly defined volume content of the filler should be selected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric field effects in the production of ICA joints Reliability of ACF in flip-chip with various bump heights Modeling of branched crosslinked composites, using the statistical polymer method Bismuth-filled anisotropically conductive adhesive for flip chip bonding A novel IMB technology for integrating active and passive components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1