通过增量学习提高片上诊断的准确性

Xuanle Ren, Mitchell Martin, R. D. Blanton
{"title":"通过增量学习提高片上诊断的准确性","authors":"Xuanle Ren, Mitchell Martin, R. D. Blanton","doi":"10.1109/VTS.2015.7116280","DOIUrl":null,"url":null,"abstract":"On-chip test/diagnosis is proposed to be an effective method to ensure the lifetime reliability of integrated systems. In order to manage the complexity of such an approach, an integrated system is partitioned into multiple modules where each module can be periodically tested, diagnosed and repaired if necessary. The limitation of on-chip memory and computing capability, coupled with the inherent uncertainty in diagnosis, causes the occurrence of misdiagnoses. To address this challenge, a novel incremental-learning algorithm, namely dynamic k-nearest-neighbor (DKNN), is developed to improve the accuracy of on-chip diagnosis. Different from the conventional KNN, DKNN employs online diagnosis data to update the learned classifier so that the classifier can keep evolving as new diagnosis data becomes available. Incorporating online diagnosis data enables tracking of the fault distribution and thus improves diagnostic accuracy. Experiments using various benchmark circuits (e.g., the cache controller from the OpenSPARC T2 processor design) demonstrate that diagnostic accuracy can be more than doubled.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Improving accuracy of on-chip diagnosis via incremental learning\",\"authors\":\"Xuanle Ren, Mitchell Martin, R. D. Blanton\",\"doi\":\"10.1109/VTS.2015.7116280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-chip test/diagnosis is proposed to be an effective method to ensure the lifetime reliability of integrated systems. In order to manage the complexity of such an approach, an integrated system is partitioned into multiple modules where each module can be periodically tested, diagnosed and repaired if necessary. The limitation of on-chip memory and computing capability, coupled with the inherent uncertainty in diagnosis, causes the occurrence of misdiagnoses. To address this challenge, a novel incremental-learning algorithm, namely dynamic k-nearest-neighbor (DKNN), is developed to improve the accuracy of on-chip diagnosis. Different from the conventional KNN, DKNN employs online diagnosis data to update the learned classifier so that the classifier can keep evolving as new diagnosis data becomes available. Incorporating online diagnosis data enables tracking of the fault distribution and thus improves diagnostic accuracy. Experiments using various benchmark circuits (e.g., the cache controller from the OpenSPARC T2 processor design) demonstrate that diagnostic accuracy can be more than doubled.\",\"PeriodicalId\":187545,\"journal\":{\"name\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 33rd VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2015.7116280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

片上测试/诊断是保证集成系统寿命可靠性的有效方法。为了管理这种方法的复杂性,集成系统被划分为多个模块,每个模块都可以定期测试、诊断和必要时修复。由于片上存储和计算能力的限制,再加上诊断本身的不确定性,导致了误诊的发生。为了解决这一挑战,开发了一种新的增量学习算法,即动态k-最近邻(DKNN),以提高片上诊断的准确性。与传统的KNN不同,DKNN利用在线诊断数据更新学习到的分类器,使分类器能够随着新的诊断数据的出现而不断进化。结合在线诊断数据,可以跟踪故障的分布,提高诊断的准确性。使用各种基准电路(例如,来自OpenSPARC T2处理器设计的缓存控制器)的实验表明,诊断准确性可以提高一倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving accuracy of on-chip diagnosis via incremental learning
On-chip test/diagnosis is proposed to be an effective method to ensure the lifetime reliability of integrated systems. In order to manage the complexity of such an approach, an integrated system is partitioned into multiple modules where each module can be periodically tested, diagnosed and repaired if necessary. The limitation of on-chip memory and computing capability, coupled with the inherent uncertainty in diagnosis, causes the occurrence of misdiagnoses. To address this challenge, a novel incremental-learning algorithm, namely dynamic k-nearest-neighbor (DKNN), is developed to improve the accuracy of on-chip diagnosis. Different from the conventional KNN, DKNN employs online diagnosis data to update the learned classifier so that the classifier can keep evolving as new diagnosis data becomes available. Incorporating online diagnosis data enables tracking of the fault distribution and thus improves diagnostic accuracy. Experiments using various benchmark circuits (e.g., the cache controller from the OpenSPARC T2 processor design) demonstrate that diagnostic accuracy can be more than doubled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling unauthorized RF transmission below noise floor with no detectable impact on primary communication performance Innovative practices session 7C: Mixed signal test and debug Impact of parameter variations on FinFET faults A call to action: Securing IEEE 1687 and the need for an IEEE test Security Standard An early prediction methodology for aging sensor insertion to assure safe circuit operation due to NBTI aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1