F. Mu, K. Iguchi, H. Nakazawa, Yoshikazu Takahashi, M. Fujino, T. Suga
{"title":"室温SiC-SiC直接晶圆键合的SAB方法","authors":"F. Mu, K. Iguchi, H. Nakazawa, Yoshikazu Takahashi, M. Fujino, T. Suga","doi":"10.23919/LTB-3D.2017.7947399","DOIUrl":null,"url":null,"abstract":"Room temperature direct wafer bonding of SiC-SiC by standard surface-activated bonding (SAB) and modified SAB with a Si-containing Ar ion beam were compared in terms of bonding energy, interface structure and composition. Compared with that obtained by standard SAB, the bonding interface obtained by modified SAB with a Si-containing Ar ion beam is >30% stronger, which should be due to the in situ Si compensation during surface activation by the Si-containing Ar ion beam.","PeriodicalId":183993,"journal":{"name":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room temperature SiC-SiC direct wafer bonding by SAB methods\",\"authors\":\"F. Mu, K. Iguchi, H. Nakazawa, Yoshikazu Takahashi, M. Fujino, T. Suga\",\"doi\":\"10.23919/LTB-3D.2017.7947399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Room temperature direct wafer bonding of SiC-SiC by standard surface-activated bonding (SAB) and modified SAB with a Si-containing Ar ion beam were compared in terms of bonding energy, interface structure and composition. Compared with that obtained by standard SAB, the bonding interface obtained by modified SAB with a Si-containing Ar ion beam is >30% stronger, which should be due to the in situ Si compensation during surface activation by the Si-containing Ar ion beam.\",\"PeriodicalId\":183993,\"journal\":{\"name\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/LTB-3D.2017.7947399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/LTB-3D.2017.7947399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Room temperature SiC-SiC direct wafer bonding by SAB methods
Room temperature direct wafer bonding of SiC-SiC by standard surface-activated bonding (SAB) and modified SAB with a Si-containing Ar ion beam were compared in terms of bonding energy, interface structure and composition. Compared with that obtained by standard SAB, the bonding interface obtained by modified SAB with a Si-containing Ar ion beam is >30% stronger, which should be due to the in situ Si compensation during surface activation by the Si-containing Ar ion beam.