基于人工神经网络的电荷保守场效应管建模

J. King, C. Wilson
{"title":"基于人工神经网络的电荷保守场效应管建模","authors":"J. King, C. Wilson","doi":"10.23919/EUMIC.2017.8230696","DOIUrl":null,"url":null,"abstract":"The paper presents a comprehensive charge modelling approach for field-effect transistor (FET) devices. For the first time an artificial neural network (ANN) is combined with the division-by-current approach to FET charge modelling. Using this technique a large-signal charge model is extracted for a 10 W GaN device from MACOM. It is shown through measurements that excellent results may be obtained using just a single gate charge function, integrated analytically from small-signal measurements.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Charge conservative FET modelling using ANNs\",\"authors\":\"J. King, C. Wilson\",\"doi\":\"10.23919/EUMIC.2017.8230696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a comprehensive charge modelling approach for field-effect transistor (FET) devices. For the first time an artificial neural network (ANN) is combined with the division-by-current approach to FET charge modelling. Using this technique a large-signal charge model is extracted for a 10 W GaN device from MACOM. It is shown through measurements that excellent results may be obtained using just a single gate charge function, integrated analytically from small-signal measurements.\",\"PeriodicalId\":120932,\"journal\":{\"name\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMIC.2017.8230696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了场效应晶体管(FET)器件的综合电荷建模方法。首次将人工神经网络(ANN)与按电流划分的方法结合起来进行场效应管电荷建模。利用该技术,从MACOM中提取了10w GaN器件的大信号电荷模型。通过测量表明,仅使用单个栅极电荷函数,就可以从小信号测量中得到良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge conservative FET modelling using ANNs
The paper presents a comprehensive charge modelling approach for field-effect transistor (FET) devices. For the first time an artificial neural network (ANN) is combined with the division-by-current approach to FET charge modelling. Using this technique a large-signal charge model is extracted for a 10 W GaN device from MACOM. It is shown through measurements that excellent results may be obtained using just a single gate charge function, integrated analytically from small-signal measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 100–140 GHz SiGe-BiCMOS sub-harmonic down-converter mixer A 24-GHz transceiver with RF power envelope digital control for automotive radar ICs High-efficiency watt-level MASMOS® power amplifier for LTE applications 12/25W wideband LDMOS Power Amplifier IC (3400–3800MHz) For 5G base station applications Rugged AlGaAs P-I-N diode switches: High power RF & mmW all-shunt and series-shunt architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1