独立分量分析(ICA)用于频率选择信道的盲均衡

C. S. Wong, D. Obradovic, N. Madhu
{"title":"独立分量分析(ICA)用于频率选择信道的盲均衡","authors":"C. S. Wong, D. Obradovic, N. Madhu","doi":"10.1109/NNSP.2003.1318041","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of blind source separation (BSS) in frequency selective multiple-input multiple-output (MIMO) channels, when the only available prior knowledge about the transmitted signals is their mutual statistical independence. The novelty of the paper is two-fold. Firstly, we analytically show that when orthogonal frequency division multiplexing (OFDM) is employed, the original BSS problem is transformed into a set of standard ICA problems with complex mixing matrices. Each ICA problem is associated with one of the orthogonal subcarriers. Secondly, we show that the statistical correlation between the different frequency bins (at each orthogonal subcarrier) can be exploited to avoid the frequency-bin dependent permutation and scaling problems, which are intrinsic to the ICA solution. Our approach is also tested on a realistic channel model.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Independent component analysis (ICA) for blind equalization of frequency selective channels\",\"authors\":\"C. S. Wong, D. Obradovic, N. Madhu\",\"doi\":\"10.1109/NNSP.2003.1318041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of blind source separation (BSS) in frequency selective multiple-input multiple-output (MIMO) channels, when the only available prior knowledge about the transmitted signals is their mutual statistical independence. The novelty of the paper is two-fold. Firstly, we analytically show that when orthogonal frequency division multiplexing (OFDM) is employed, the original BSS problem is transformed into a set of standard ICA problems with complex mixing matrices. Each ICA problem is associated with one of the orthogonal subcarriers. Secondly, we show that the statistical correlation between the different frequency bins (at each orthogonal subcarrier) can be exploited to avoid the frequency-bin dependent permutation and scaling problems, which are intrinsic to the ICA solution. Our approach is also tested on a realistic channel model.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文研究了在频率选择多输入多输出(MIMO)信道中盲源分离(BSS)的问题,当传输信号的唯一可用先验知识是它们的相互统计独立性时。这种报纸的新奇之处有两方面。首先,通过分析表明,当采用正交频分复用(OFDM)时,将原BSS问题转化为一组具有复杂混合矩阵的标准ICA问题。每个ICA问题都与一个正交子载波相关联。其次,我们证明了不同频带(在每个正交子载波上)之间的统计相关性可以被利用来避免频带相关的排列和缩放问题,这些问题是ICA解决方案固有的。我们的方法也在一个现实的通道模型上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Independent component analysis (ICA) for blind equalization of frequency selective channels
In this paper we address the problem of blind source separation (BSS) in frequency selective multiple-input multiple-output (MIMO) channels, when the only available prior knowledge about the transmitted signals is their mutual statistical independence. The novelty of the paper is two-fold. Firstly, we analytically show that when orthogonal frequency division multiplexing (OFDM) is employed, the original BSS problem is transformed into a set of standard ICA problems with complex mixing matrices. Each ICA problem is associated with one of the orthogonal subcarriers. Secondly, we show that the statistical correlation between the different frequency bins (at each orthogonal subcarrier) can be exploited to avoid the frequency-bin dependent permutation and scaling problems, which are intrinsic to the ICA solution. Our approach is also tested on a realistic channel model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1