灰色模型GM(1,1)平移变换下的仿真误差特性

Yong Wang, Qinbao Song, Bo Zeng, J. Liu
{"title":"灰色模型GM(1,1)平移变换下的仿真误差特性","authors":"Yong Wang, Qinbao Song, Bo Zeng, J. Liu","doi":"10.1109/CIMSIM.2013.30","DOIUrl":null,"url":null,"abstract":"To reveal the change law of the simulation error of grey model GM(1,1) with translation transformation applying on the original sequence, in this paper, the experiments based on 55 real world data sequences have been conducted to study how the translation transformation influences the grey models' error characteristics. The results show that a larger translation transformation can make the total error between the model sequence and the original sequence toward zero, and the model precision remains independent. The conclusion implies that we can use translation transformation to change the original sequence data level to simplify the model building without changing the model precision.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Error Characteristics of Grey Model GM(1,1) under Translation Transformation\",\"authors\":\"Yong Wang, Qinbao Song, Bo Zeng, J. Liu\",\"doi\":\"10.1109/CIMSIM.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reveal the change law of the simulation error of grey model GM(1,1) with translation transformation applying on the original sequence, in this paper, the experiments based on 55 real world data sequences have been conducted to study how the translation transformation influences the grey models' error characteristics. The results show that a larger translation transformation can make the total error between the model sequence and the original sequence toward zero, and the model precision remains independent. The conclusion implies that we can use translation transformation to change the original sequence data level to simplify the model building without changing the model precision.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了揭示灰色模型GM(1,1)在原始序列上进行平移变换后仿真误差的变化规律,本文基于55个真实数据序列进行了实验,研究平移变换对灰色模型误差特性的影响。结果表明,较大的平移变换可以使模型序列与原始序列之间的总误差趋于零,模型精度保持独立。结论表明,在不改变模型精度的前提下,可以利用平移变换改变原始序列数据层次,简化模型构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Error Characteristics of Grey Model GM(1,1) under Translation Transformation
To reveal the change law of the simulation error of grey model GM(1,1) with translation transformation applying on the original sequence, in this paper, the experiments based on 55 real world data sequences have been conducted to study how the translation transformation influences the grey models' error characteristics. The results show that a larger translation transformation can make the total error between the model sequence and the original sequence toward zero, and the model precision remains independent. The conclusion implies that we can use translation transformation to change the original sequence data level to simplify the model building without changing the model precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1