{"title":"非线性波产生的控制信号优化","authors":"J. H. Hicks, H. Bingham, R. Read","doi":"10.1115/OMAE2018-78520","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of optimization for numerical-physical wave generation in wave tanks. Control signals for a wedge-shaped plunger-type wave generator are developed to produce stable non-linear, deep-water waves in both numerical and physical wave tanks. A fully non-linear potential flow solver developed at DTU is used for the numerical work. Numerical optimization proceeds by a defect correction scheme, resulting in optimized control signals for wavelengths of 0.7–2 m (corresponding to non-dimensional wave numbers kh = 2–5.5) and steepnesses of 3–11%.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control Signal Optimization for Non-Linear Wave Generation\",\"authors\":\"J. H. Hicks, H. Bingham, R. Read\",\"doi\":\"10.1115/OMAE2018-78520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of optimization for numerical-physical wave generation in wave tanks. Control signals for a wedge-shaped plunger-type wave generator are developed to produce stable non-linear, deep-water waves in both numerical and physical wave tanks. A fully non-linear potential flow solver developed at DTU is used for the numerical work. Numerical optimization proceeds by a defect correction scheme, resulting in optimized control signals for wavelengths of 0.7–2 m (corresponding to non-dimensional wave numbers kh = 2–5.5) and steepnesses of 3–11%.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-78520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control Signal Optimization for Non-Linear Wave Generation
This paper investigates the use of optimization for numerical-physical wave generation in wave tanks. Control signals for a wedge-shaped plunger-type wave generator are developed to produce stable non-linear, deep-water waves in both numerical and physical wave tanks. A fully non-linear potential flow solver developed at DTU is used for the numerical work. Numerical optimization proceeds by a defect correction scheme, resulting in optimized control signals for wavelengths of 0.7–2 m (corresponding to non-dimensional wave numbers kh = 2–5.5) and steepnesses of 3–11%.