Nisa Arofatus Sholikhah
{"title":"Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan","authors":"Nisa Arofatus Sholikhah","doi":"10.32665/statkom.v1i1.443","DOIUrl":null,"url":null,"abstract":"Latar   Belakang:    Dokumen kependudukan di Kabupaten Bojonegoro memiliki tingkat kepentingan yang tinggi sehingga pemerintah menyediakan aplikasi Sistem Informasi Manajemen Kependudukan (SIMDUK), namun dalam prakteknya aplikasi ini kurang efektif karena rendahnya kesadaran masyarakat dalam melengkapi dokumen kependudukan. Untuk mengatasi permasalahan ini, diperlukan adanya pengelompokan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan.\nTujuan: Melakukan perbandingan metode-metode clustering dalam rangka mendapatkan metode terbaik sehingga bisa digunakan untuk pengelompokan Kecamatan di Kabupaten Bojonegoro.\nMetode: Menerapkan metode kuantitatif berupa metode clustering yaitu K-Means, K-Medoid, X-Means, dan DBSCAN. Metode clustering terbaik dipilih berdasarkan ukuran performance vector terkecil. Sumber data berasal dari data sekunder dari Dinas Kependudukan dan Catatan Sipil Kabupaten Bojonegoro tahun 2020.\nHasil: Diperoleh metode clustering terbaik yaitu metode K-Means dengan performance vector sebesar -0,697 dalam membentuk 5 cluster yaitu cluster 1 dengan klasifikasi sangat aktif yang beranggotakan 4 kecamatan, cluster 3 dengan klasifikasi aktif beranggotakan 5 kecamatan, cluster 4 dengan klasifikasi cukup aktif beranggotakan 7 kecamatan, cluster 0 dengan klasifikasi kurang aktif beranggotakan 8 kecamatan, dan cluster 2 dengan klasifikasi tidak aktif yang beranggotakan 4 kecamatan.\nKesimpulan: Metode clustering terbaik yaitu metode K-Means yang berhasil mengelompokkan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan, serta menginformasikan banyaknya kecamatan yang kurang aktif.","PeriodicalId":340369,"journal":{"name":"Jurnal Statistika dan Komputasi","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Statistika dan Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32665/statkom.v1i1.443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:Bojonegoro地区的档案具有很高的重要性,因此政府向南提交了关于人口管理信息系统的申请(siduk),但实际上,由于公众补充占领文件缺乏意识,这一申请的效果不佳。为了解决这一问题,根据所有占用文件的所有权,需要对博jonegoro地区的街道进行分组。目的:比较集群方法以获得最佳的方法,以便用于Bojonegoro地区的街道分组。方法:应用clustering方法的定量方法是K-Means, K-Medoid, X-Means和DBSCAN。最佳的聚类方法是根据最小的向量性能大小来选择的。数据来源来自2020年的摄政和博jonegoro民事记录的次要数据。最好的结果:聚类方法获得K-Means方法以演出-0,697大小的向量组成一个5集群的集群1 4街道组成的分类非常活跃,集群三分类的活跃成员五街道,街道7集群成员分类的4很活跃,集群0 8街道组成,不太活跃的分类和集群2个分类的不活跃成员的4个街道。结论:目前的最佳方法是k -手段,它成功地根据占领文件的完整所有权以及许多不太活跃的街道对博jonegoro地区进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studi Perbandingan Clustering Kecamatan di Kabupaten Bojonegoro Berdasarkan Keaktifan Penduduk Dalam Kepemilikan Dokumen Kependudukan
Latar   Belakang:    Dokumen kependudukan di Kabupaten Bojonegoro memiliki tingkat kepentingan yang tinggi sehingga pemerintah menyediakan aplikasi Sistem Informasi Manajemen Kependudukan (SIMDUK), namun dalam prakteknya aplikasi ini kurang efektif karena rendahnya kesadaran masyarakat dalam melengkapi dokumen kependudukan. Untuk mengatasi permasalahan ini, diperlukan adanya pengelompokan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan. Tujuan: Melakukan perbandingan metode-metode clustering dalam rangka mendapatkan metode terbaik sehingga bisa digunakan untuk pengelompokan Kecamatan di Kabupaten Bojonegoro. Metode: Menerapkan metode kuantitatif berupa metode clustering yaitu K-Means, K-Medoid, X-Means, dan DBSCAN. Metode clustering terbaik dipilih berdasarkan ukuran performance vector terkecil. Sumber data berasal dari data sekunder dari Dinas Kependudukan dan Catatan Sipil Kabupaten Bojonegoro tahun 2020. Hasil: Diperoleh metode clustering terbaik yaitu metode K-Means dengan performance vector sebesar -0,697 dalam membentuk 5 cluster yaitu cluster 1 dengan klasifikasi sangat aktif yang beranggotakan 4 kecamatan, cluster 3 dengan klasifikasi aktif beranggotakan 5 kecamatan, cluster 4 dengan klasifikasi cukup aktif beranggotakan 7 kecamatan, cluster 0 dengan klasifikasi kurang aktif beranggotakan 8 kecamatan, dan cluster 2 dengan klasifikasi tidak aktif yang beranggotakan 4 kecamatan. Kesimpulan: Metode clustering terbaik yaitu metode K-Means yang berhasil mengelompokkan Kecamatan di Kabupaten Bojonegoro berdasarkan kelengkapan kepemilikan dokumen kependudukan, serta menginformasikan banyaknya kecamatan yang kurang aktif.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Double Seasonal Autoregressive Integrated Moving Average (DSARIMA) for Stock Forecasting Peramalan Jumlah Wisatawan Mancanegara di Provinsi Kalimantan Timur Menggunakan Fuzzy Backpropagation Neural Network Penerapan Metode Ward Clustering Untuk Pengelompokkan Daerah Rawan Kriminalitas Di Jawa Timur Tahun 2021 Analisis Klaster Dalam Pengelompokan Kabupaten/Kota Di Provinsi Jambi Berdasarkan Penyakit Menular Menggunakan Metode K-Means Penerapan Metode Naive Bayes Classifier Untuk Klasifikasi Indeks Pembangunan Manusia Di Provinsi Jawa Timur
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1