TDMA智能手机系统音频接地完整性建模与测量

Shinyoung Park, Jinwook Song, Subin Kim, Manho Lee, Jonghoon J. Kim, Joungho Kim
{"title":"TDMA智能手机系统音频接地完整性建模与测量","authors":"Shinyoung Park, Jinwook Song, Subin Kim, Manho Lee, Jonghoon J. Kim, Joungho Kim","doi":"10.1109/EDAPS.2016.7893110","DOIUrl":null,"url":null,"abstract":"In this paper, we first propose a ground network model of an arbitrary shaped multi-layer printed circuit board (PCB)/chassis for accurate and efficient analysis of audio frequency ground noise coupled from a time division multiple access (TMDA) RF power amplifier (PA) to an audio circuit in a smartphone system. We designed test vehicles with varied extent in the ground noise coupling. We successfully verified the proposed model by comparing the ground noise coupling levels obtained from the model, 3-D electromagnetic (EM) simulation and measurement in time and frequency domain. We further discussed the performance of the proposed model by comparing the accuracy of its transfer ground impedance (ZG12) and analysis time with those of from the EM simulation. The proposed model showed high performance with the ZG12 agreed 91.7 % with the EM simulation, and the analysis time 95.5 % reduced compared to the simulation.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Audio frequency ground integrity modeling and measurement for a TDMA smartphone system\",\"authors\":\"Shinyoung Park, Jinwook Song, Subin Kim, Manho Lee, Jonghoon J. Kim, Joungho Kim\",\"doi\":\"10.1109/EDAPS.2016.7893110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first propose a ground network model of an arbitrary shaped multi-layer printed circuit board (PCB)/chassis for accurate and efficient analysis of audio frequency ground noise coupled from a time division multiple access (TMDA) RF power amplifier (PA) to an audio circuit in a smartphone system. We designed test vehicles with varied extent in the ground noise coupling. We successfully verified the proposed model by comparing the ground noise coupling levels obtained from the model, 3-D electromagnetic (EM) simulation and measurement in time and frequency domain. We further discussed the performance of the proposed model by comparing the accuracy of its transfer ground impedance (ZG12) and analysis time with those of from the EM simulation. The proposed model showed high performance with the ZG12 agreed 91.7 % with the EM simulation, and the analysis time 95.5 % reduced compared to the simulation.\",\"PeriodicalId\":191549,\"journal\":{\"name\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS.2016.7893110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们首先提出了一种任意形状的多层印刷电路板(PCB)/机箱的接地网络模型,用于准确有效地分析智能手机系统中时分多址(TMDA)射频功率放大器(PA)与音频电路耦合的音频地面噪声。我们设计了不同程度的地面噪声耦合试验车辆。通过比较模型、三维电磁仿真和时域、频域测量得到的地面噪声耦合水平,成功地验证了所提出的模型。我们进一步讨论了该模型的性能,通过比较其传输地阻抗(ZG12)的精度和分析时间与电磁仿真的精度。该模型具有较高的性能,ZG12与仿真结果的符合率为91.7%,分析时间比仿真结果缩短了95.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio frequency ground integrity modeling and measurement for a TDMA smartphone system
In this paper, we first propose a ground network model of an arbitrary shaped multi-layer printed circuit board (PCB)/chassis for accurate and efficient analysis of audio frequency ground noise coupled from a time division multiple access (TMDA) RF power amplifier (PA) to an audio circuit in a smartphone system. We designed test vehicles with varied extent in the ground noise coupling. We successfully verified the proposed model by comparing the ground noise coupling levels obtained from the model, 3-D electromagnetic (EM) simulation and measurement in time and frequency domain. We further discussed the performance of the proposed model by comparing the accuracy of its transfer ground impedance (ZG12) and analysis time with those of from the EM simulation. The proposed model showed high performance with the ZG12 agreed 91.7 % with the EM simulation, and the analysis time 95.5 % reduced compared to the simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced macromodels of high-speed low-power differential drivers Broadband material model identification with GMS-parameters Modeling of power distribution networks for path finding 36-GHz-bandwidth quad-channel driver module using compact QFN package for optical coherent systems Evaluation of near-singular integrals for quadrilateral basis in integral equation solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1