Donghyun Kim, Kwanho Kim, Joo-Young Kim, Seungjin Lee, H. Yoo
{"title":"基于NoC和视觉图像处理存储器的81.6 GOPS目标识别处理器","authors":"Donghyun Kim, Kwanho Kim, Joo-Young Kim, Seungjin Lee, H. Yoo","doi":"10.1109/CICC.2007.4405769","DOIUrl":null,"url":null,"abstract":"An 81.6 GOPS object recognition processor is developed by using NoC and visual image processing (VIP) memory. SIFT (scale invariant feature transform) object recognition requires huge computing power and data transactions among tasks. The chip integrates 10 SIMD PEs for data/task level parallelism while the NoC facilitates inter-PE communications. The VIP memory searches local maximum pixel inside a 3times3 window in a single cycle providing 65.6 GOPS. The proposed processor achieves 15.9 fps SIFT feature extraction at 200 MHz.","PeriodicalId":130106,"journal":{"name":"2007 IEEE Custom Integrated Circuits Conference","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"An 81.6 GOPS Object Recognition Processor Based on NoC and Visual Image Processing Memory\",\"authors\":\"Donghyun Kim, Kwanho Kim, Joo-Young Kim, Seungjin Lee, H. Yoo\",\"doi\":\"10.1109/CICC.2007.4405769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An 81.6 GOPS object recognition processor is developed by using NoC and visual image processing (VIP) memory. SIFT (scale invariant feature transform) object recognition requires huge computing power and data transactions among tasks. The chip integrates 10 SIMD PEs for data/task level parallelism while the NoC facilitates inter-PE communications. The VIP memory searches local maximum pixel inside a 3times3 window in a single cycle providing 65.6 GOPS. The proposed processor achieves 15.9 fps SIFT feature extraction at 200 MHz.\",\"PeriodicalId\":130106,\"journal\":{\"name\":\"2007 IEEE Custom Integrated Circuits Conference\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Custom Integrated Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2007.4405769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Custom Integrated Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2007.4405769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An 81.6 GOPS Object Recognition Processor Based on NoC and Visual Image Processing Memory
An 81.6 GOPS object recognition processor is developed by using NoC and visual image processing (VIP) memory. SIFT (scale invariant feature transform) object recognition requires huge computing power and data transactions among tasks. The chip integrates 10 SIMD PEs for data/task level parallelism while the NoC facilitates inter-PE communications. The VIP memory searches local maximum pixel inside a 3times3 window in a single cycle providing 65.6 GOPS. The proposed processor achieves 15.9 fps SIFT feature extraction at 200 MHz.