通信信号调制识别中的对抗性攻击

Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang
{"title":"通信信号调制识别中的对抗性攻击","authors":"Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang","doi":"10.1109/ICICSP55539.2022.10050592","DOIUrl":null,"url":null,"abstract":"Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adversarial Attack on Communication Signal Modulation Recognition\",\"authors\":\"Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang\",\"doi\":\"10.1109/ICICSP55539.2022.10050592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.\",\"PeriodicalId\":281095,\"journal\":{\"name\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSP55539.2022.10050592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卷积网络模型(CNN)极易受到对抗样本的攻击,这对CNN模型的安全性提出了严峻的挑战。基于CNN调制和识别通信信号的任务,我们提出了一种白盒攻击算法,即最短距离攻击法(SD-Alg),该算法可以产生极小的干扰,大大降低了模型的分类性能。实验表明,该算法在攻击成功率、运行时间和对抗扰动大小等方面优于同类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Attack on Communication Signal Modulation Recognition
Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1