基于jnd的视频质量模型分析与预测

Haiqiang Wang, Xinfeng Zhang, Chao Yang, C.-C. Jay Kuo
{"title":"基于jnd的视频质量模型分析与预测","authors":"Haiqiang Wang, Xinfeng Zhang, Chao Yang, C.-C. Jay Kuo","doi":"10.1109/PCS.2018.8456243","DOIUrl":null,"url":null,"abstract":"The just-noticeable-difference (JND) visual perception property has received much attention in characterizing human subjective viewing experience of compressed video. In this work, we quantity the JND-based video quality assessment model using the satisfied user ratio (SUR) curve, and show that the SUR model can be greatly simplified since the JND points of multiple subjects for the same content in the VideoSet can be well modeled by the normal distribution. Then, we design an SUR prediction method with video quality degradation features and masking features and use them to predict the first, second and the third JND points and their corresponding SUR curves. Finally, we verify the performance of the proposed SUR prediction method with different configurations on the VideoSet. The experimental results demonstrate that the proposed SUR prediction method achieves good performance in various resolutions with the mean absolute error (MAE) of the SUR smaller than 0.05 on average.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Analysis and Prediction of JND-Based Video Quality Model\",\"authors\":\"Haiqiang Wang, Xinfeng Zhang, Chao Yang, C.-C. Jay Kuo\",\"doi\":\"10.1109/PCS.2018.8456243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The just-noticeable-difference (JND) visual perception property has received much attention in characterizing human subjective viewing experience of compressed video. In this work, we quantity the JND-based video quality assessment model using the satisfied user ratio (SUR) curve, and show that the SUR model can be greatly simplified since the JND points of multiple subjects for the same content in the VideoSet can be well modeled by the normal distribution. Then, we design an SUR prediction method with video quality degradation features and masking features and use them to predict the first, second and the third JND points and their corresponding SUR curves. Finally, we verify the performance of the proposed SUR prediction method with different configurations on the VideoSet. The experimental results demonstrate that the proposed SUR prediction method achieves good performance in various resolutions with the mean absolute error (MAE) of the SUR smaller than 0.05 on average.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

just- visible -difference (JND)视觉感知特性在描述压缩视频的主观观看体验方面受到了广泛关注。在这项工作中,我们使用满意用户比例(SUR)曲线对基于JND的视频质量评估模型进行了量化,并表明由于VideoSet中相同内容的多个主题的JND点可以通过正态分布很好地建模,因此SUR模型可以大大简化。然后,我们设计了一种包含视频质量退化特征和掩蔽特征的SUR预测方法,并利用它们预测第一、第二和第三个JND点及其对应的SUR曲线。最后,在VideoSet上验证了不同配置下所提出的SUR预测方法的性能。实验结果表明,所提出的SUR预测方法在不同分辨率下均取得了较好的预测效果,平均绝对误差(MAE)均小于0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and Prediction of JND-Based Video Quality Model
The just-noticeable-difference (JND) visual perception property has received much attention in characterizing human subjective viewing experience of compressed video. In this work, we quantity the JND-based video quality assessment model using the satisfied user ratio (SUR) curve, and show that the SUR model can be greatly simplified since the JND points of multiple subjects for the same content in the VideoSet can be well modeled by the normal distribution. Then, we design an SUR prediction method with video quality degradation features and masking features and use them to predict the first, second and the third JND points and their corresponding SUR curves. Finally, we verify the performance of the proposed SUR prediction method with different configurations on the VideoSet. The experimental results demonstrate that the proposed SUR prediction method achieves good performance in various resolutions with the mean absolute error (MAE) of the SUR smaller than 0.05 on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1