UNSW-NB15上超参数分类的深度学习模型比较研究

Seongsoo Kim, Lei Chen, Jongyeop Kim, Yiming Ji, Rami J. Haddad
{"title":"UNSW-NB15上超参数分类的深度学习模型比较研究","authors":"Seongsoo Kim, Lei Chen, Jongyeop Kim, Yiming Ji, Rami J. Haddad","doi":"10.1109/SERA57763.2023.10197694","DOIUrl":null,"url":null,"abstract":"Intrusion Detection System (IDS) is a crucial security mechanism for protecting computer networks from cyber-attacks. Deep learning models have the potential to detect attack types by leveraging their ability to learn and extract features from large volumes of data. In this study, we compare the performance of four different deep learning algorithms for IDS: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), bidirectional LSTM, and bidirectional GRU. We evaluate the attack prediction accuracy for three types of attacks: Denial of Service (DoS), Generic, and Exploits. We vary each algorithm's range parameter and epochs and determine the best parameter combination sets for achieving the highest accuracy. Our experimental results demonstrate that increased range parameters influence the accuracy of LSTM, bi-LSTM, and Bi-GRU models. Ultimately, GRU proved to have the most outstanding performance among the four algorithms tested.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Deep Learning Models for Hyper Parameter Classification on UNSW-NB15\",\"authors\":\"Seongsoo Kim, Lei Chen, Jongyeop Kim, Yiming Ji, Rami J. Haddad\",\"doi\":\"10.1109/SERA57763.2023.10197694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Detection System (IDS) is a crucial security mechanism for protecting computer networks from cyber-attacks. Deep learning models have the potential to detect attack types by leveraging their ability to learn and extract features from large volumes of data. In this study, we compare the performance of four different deep learning algorithms for IDS: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), bidirectional LSTM, and bidirectional GRU. We evaluate the attack prediction accuracy for three types of attacks: Denial of Service (DoS), Generic, and Exploits. We vary each algorithm's range parameter and epochs and determine the best parameter combination sets for achieving the highest accuracy. Our experimental results demonstrate that increased range parameters influence the accuracy of LSTM, bi-LSTM, and Bi-GRU models. Ultimately, GRU proved to have the most outstanding performance among the four algorithms tested.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

入侵检测系统(IDS)是保护计算机网络免受网络攻击的重要安全机制。深度学习模型利用其从大量数据中学习和提取特征的能力,具有检测攻击类型的潜力。在这项研究中,我们比较了四种不同的IDS深度学习算法的性能:长短期记忆(LSTM)、门控循环单元(GRU)、双向LSTM和双向GRU。我们评估了三种类型攻击的攻击预测准确性:拒绝服务(DoS),通用和漏洞利用。我们改变每个算法的范围参数和epoch,并确定实现最高精度的最佳参数组合集。实验结果表明,距离参数的增加会影响LSTM、bi-LSTM和Bi-GRU模型的精度。最终,在测试的四种算法中,GRU的性能最为突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study of Deep Learning Models for Hyper Parameter Classification on UNSW-NB15
Intrusion Detection System (IDS) is a crucial security mechanism for protecting computer networks from cyber-attacks. Deep learning models have the potential to detect attack types by leveraging their ability to learn and extract features from large volumes of data. In this study, we compare the performance of four different deep learning algorithms for IDS: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), bidirectional LSTM, and bidirectional GRU. We evaluate the attack prediction accuracy for three types of attacks: Denial of Service (DoS), Generic, and Exploits. We vary each algorithm's range parameter and epochs and determine the best parameter combination sets for achieving the highest accuracy. Our experimental results demonstrate that increased range parameters influence the accuracy of LSTM, bi-LSTM, and Bi-GRU models. Ultimately, GRU proved to have the most outstanding performance among the four algorithms tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Students’ Job Seeking Process Through A Digital Badging System Classification of Multilingual Medical Documents using Deep Learning Data-Driven Smart Manufacturing Technologies for Prop Shop Systems Identifying Code Tampering Using A Bytecode Comparison Analysis Tool Evaluating the Performance of Containerized Webservers against web servers on Virtual Machines using Bombardment and Siege
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1