低温和量子应用的超导钼多芯片模块方法

Archit Shah, Sherman E. Peek, Bhargav Yelamanchili, Vaibhav Gupta, D. Tuckerman, C. Cantaloube, John A. Sellers, M. Hamilton
{"title":"低温和量子应用的超导钼多芯片模块方法","authors":"Archit Shah, Sherman E. Peek, Bhargav Yelamanchili, Vaibhav Gupta, D. Tuckerman, C. Cantaloube, John A. Sellers, M. Hamilton","doi":"10.1109/ectc51906.2022.00052","DOIUrl":null,"url":null,"abstract":"We describe a superconducting multi-chip module (S-MCM) technology using Mo as a robust substrate on which to construct multi-layer superconducting redistribution layers for chip-to-chip signal transmission for densely-integrated cryogenic and quantum electronics. The mechanical robustness and ductile nature of Mo can allow for the integration of chips on a larger scale S-MCM substrate compared to currently available technologies. We demonstrate this integration technology by flip-chip bonding Si chips to Mo substrates using In bumps and epoxy underfill. Superconducting daisy-chain test structures were formed by Mo substrates with polyimide dielectric and superconducting Nb traces connected to Si chips with varying numbers of transitions and bump array densities. Resistance and superconducting transition temperatures of the various daisy-chain configurations were measured from room temperature to 4.2 K. To explore CTE-related challenges, assemblies using Si chips with dimensions up to 27 mm x 22 mm (In bump array size of 20 mm x 20 mm) were found to survive the multiple thermal cycles from room temperature to cryogenic temperatures.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Superconducting Molybdenum Multi-Chip Module Approach for Cryogenic and Quantum Applications\",\"authors\":\"Archit Shah, Sherman E. Peek, Bhargav Yelamanchili, Vaibhav Gupta, D. Tuckerman, C. Cantaloube, John A. Sellers, M. Hamilton\",\"doi\":\"10.1109/ectc51906.2022.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a superconducting multi-chip module (S-MCM) technology using Mo as a robust substrate on which to construct multi-layer superconducting redistribution layers for chip-to-chip signal transmission for densely-integrated cryogenic and quantum electronics. The mechanical robustness and ductile nature of Mo can allow for the integration of chips on a larger scale S-MCM substrate compared to currently available technologies. We demonstrate this integration technology by flip-chip bonding Si chips to Mo substrates using In bumps and epoxy underfill. Superconducting daisy-chain test structures were formed by Mo substrates with polyimide dielectric and superconducting Nb traces connected to Si chips with varying numbers of transitions and bump array densities. Resistance and superconducting transition temperatures of the various daisy-chain configurations were measured from room temperature to 4.2 K. To explore CTE-related challenges, assemblies using Si chips with dimensions up to 27 mm x 22 mm (In bump array size of 20 mm x 20 mm) were found to survive the multiple thermal cycles from room temperature to cryogenic temperatures.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们描述了一种超导多芯片模块(S-MCM)技术,使用Mo作为坚固的衬底,在其上构建多层超导重分布层,用于芯片间信号传输,用于密集集成的低温和量子电子学。与目前可用的技术相比,Mo的机械坚固性和延展性可以允许在更大规模的S-MCM基板上集成芯片。我们通过使用In凸起和环氧底料将Si芯片倒装到Mo衬底来演示这种集成技术。超导菊链测试结构由Mo衬底与聚酰亚胺介质和超导Nb走线连接到具有不同跃迁数量和碰撞阵列密度的Si芯片形成。在室温至4.2 K范围内测量了不同雏菊链构型的电阻和超导转变温度。为了探索与cte相关的挑战,使用尺寸高达27 mm x 22 mm(凹凸阵列尺寸为20 mm x 20 mm)的Si芯片的组件被发现可以在从室温到低温的多个热循环中存活下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superconducting Molybdenum Multi-Chip Module Approach for Cryogenic and Quantum Applications
We describe a superconducting multi-chip module (S-MCM) technology using Mo as a robust substrate on which to construct multi-layer superconducting redistribution layers for chip-to-chip signal transmission for densely-integrated cryogenic and quantum electronics. The mechanical robustness and ductile nature of Mo can allow for the integration of chips on a larger scale S-MCM substrate compared to currently available technologies. We demonstrate this integration technology by flip-chip bonding Si chips to Mo substrates using In bumps and epoxy underfill. Superconducting daisy-chain test structures were formed by Mo substrates with polyimide dielectric and superconducting Nb traces connected to Si chips with varying numbers of transitions and bump array densities. Resistance and superconducting transition temperatures of the various daisy-chain configurations were measured from room temperature to 4.2 K. To explore CTE-related challenges, assemblies using Si chips with dimensions up to 27 mm x 22 mm (In bump array size of 20 mm x 20 mm) were found to survive the multiple thermal cycles from room temperature to cryogenic temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient Thermal Modeling of Die Bond Process in Multiple Die Stacked Flash Memory Package Development and Application of the Moisture-Dependent Viscoelastic Model of Polyimide in Hygro-Thermo-Mechanical Analysis of Fan-Out Interconnect Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism Demonstration of Substrate Embedded Ni-Zn Ferrite Core Solenoid Inductors Using a Photosensitive Glass Substrate A De-Embedding and Embedding Procedure for High-Speed Channel Eye Diagram Oscilloscope Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1