基于集中比准则的稀疏表示DOA估计

Aifei Liu, Fujia Xu, Boyang Du, Yanting Wang
{"title":"基于集中比准则的稀疏表示DOA估计","authors":"Aifei Liu, Fujia Xu, Boyang Du, Yanting Wang","doi":"10.1109/ICICSP55539.2022.10050690","DOIUrl":null,"url":null,"abstract":"A sparse representation-based direction-of-arrival (DOA) estimation method is proposed which defines a concentration ratio (CR) criterion for selecting the regularization parameter, shorten as the SRCR method. The proposed SRCR method performs regardless of the statistics of noise and thus it is applicable in the case of noise with unknown statistics. In particular, the SRCR method defines the CR of the recovered sparse vector as a criterion for selecting the regularization parameter. In addition, it optimizes the regularization parameter to ensure the CR is near to 1. By this way, the optimized regularization parameter recovers the sparsest signal vector, which results in correct DOA estimation. Simulation results demonstrate that the SRCR method is independent of the statistics of noise, and it performs significantly better than the SR-based DOA estimation method with the discrepancy principle (DP) for the regularization parameter selection.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Representation-Based DOA Estimation with Concentration Ratio Criteria\",\"authors\":\"Aifei Liu, Fujia Xu, Boyang Du, Yanting Wang\",\"doi\":\"10.1109/ICICSP55539.2022.10050690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sparse representation-based direction-of-arrival (DOA) estimation method is proposed which defines a concentration ratio (CR) criterion for selecting the regularization parameter, shorten as the SRCR method. The proposed SRCR method performs regardless of the statistics of noise and thus it is applicable in the case of noise with unknown statistics. In particular, the SRCR method defines the CR of the recovered sparse vector as a criterion for selecting the regularization parameter. In addition, it optimizes the regularization parameter to ensure the CR is near to 1. By this way, the optimized regularization parameter recovers the sparsest signal vector, which results in correct DOA estimation. Simulation results demonstrate that the SRCR method is independent of the statistics of noise, and it performs significantly better than the SR-based DOA estimation method with the discrepancy principle (DP) for the regularization parameter selection.\",\"PeriodicalId\":281095,\"journal\":{\"name\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSP55539.2022.10050690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于稀疏表示的到达方向估计方法,该方法定义了集中比(CR)准则来选择正则化参数,简称为SRCR方法。提出的SRCR方法不考虑噪声的统计量,适用于统计量未知的噪声。其中,SRCR方法将恢复稀疏向量的CR定义为选择正则化参数的标准。并对正则化参数进行优化,使CR接近于1。通过这种方法,优化后的正则化参数恢复出最稀疏的信号向量,从而得到正确的DOA估计。仿真结果表明,SRCR方法不受噪声统计量的影响,在正则化参数选择方面明显优于基于差异原理的sr DOA估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse Representation-Based DOA Estimation with Concentration Ratio Criteria
A sparse representation-based direction-of-arrival (DOA) estimation method is proposed which defines a concentration ratio (CR) criterion for selecting the regularization parameter, shorten as the SRCR method. The proposed SRCR method performs regardless of the statistics of noise and thus it is applicable in the case of noise with unknown statistics. In particular, the SRCR method defines the CR of the recovered sparse vector as a criterion for selecting the regularization parameter. In addition, it optimizes the regularization parameter to ensure the CR is near to 1. By this way, the optimized regularization parameter recovers the sparsest signal vector, which results in correct DOA estimation. Simulation results demonstrate that the SRCR method is independent of the statistics of noise, and it performs significantly better than the SR-based DOA estimation method with the discrepancy principle (DP) for the regularization parameter selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1