ReRAM SSD系统13倍续航力的机器学习预测

T. Iwasaki, S. Ning, Hiroki Yamazawa, Chao Sun, S. Tanakamaru, K. Takeuchi
{"title":"ReRAM SSD系统13倍续航力的机器学习预测","authors":"T. Iwasaki, S. Ning, Hiroki Yamazawa, Chao Sun, S. Tanakamaru, K. Takeuchi","doi":"10.1109/IMW.2015.7150294","DOIUrl":null,"url":null,"abstract":"The variable behavior of ReRAM memory cells is modeled with machine learning. Two types of prediction are investigated, reset in the next-cycle and cell fail in the long term. A new proposal, Proactive Bit Redundancy, introduces a ML-trained Prediction Engine into the SSD controller, to predict fail cells and replace them proactively - before actual failure- by redundancy. With the Invalid Masking technique, predicted cells are marked in-place within the page, so that no extra address table is needed. Thus, with ninimal overhead, 2.85x bit error rate reduction or 13x endurance improvement is obtained based on a 50nm AlxOy testchip.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"1996 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Machine Learning Prediction for 13X Endurance Enhancement in ReRAM SSD System\",\"authors\":\"T. Iwasaki, S. Ning, Hiroki Yamazawa, Chao Sun, S. Tanakamaru, K. Takeuchi\",\"doi\":\"10.1109/IMW.2015.7150294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variable behavior of ReRAM memory cells is modeled with machine learning. Two types of prediction are investigated, reset in the next-cycle and cell fail in the long term. A new proposal, Proactive Bit Redundancy, introduces a ML-trained Prediction Engine into the SSD controller, to predict fail cells and replace them proactively - before actual failure- by redundancy. With the Invalid Masking technique, predicted cells are marked in-place within the page, so that no extra address table is needed. Thus, with ninimal overhead, 2.85x bit error rate reduction or 13x endurance improvement is obtained based on a 50nm AlxOy testchip.\",\"PeriodicalId\":107437,\"journal\":{\"name\":\"2015 IEEE International Memory Workshop (IMW)\",\"volume\":\"1996 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW.2015.7150294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

利用机器学习对ReRAM存储单元的可变行为进行建模。研究了两种类型的预测,在下一个周期中重置和细胞长期失效。一项新的提议,主动位冗余,在SSD控制器中引入了一个ml训练的预测引擎,通过冗余来预测故障单元,并在实际故障之前主动替换它们。使用无效屏蔽技术,预测的单元格在页面中被就地标记,因此不需要额外的地址表。因此,在最小的开销下,基于50nm AlxOy测试芯片获得了2.85倍的误码率降低或13倍的耐用性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Prediction for 13X Endurance Enhancement in ReRAM SSD System
The variable behavior of ReRAM memory cells is modeled with machine learning. Two types of prediction are investigated, reset in the next-cycle and cell fail in the long term. A new proposal, Proactive Bit Redundancy, introduces a ML-trained Prediction Engine into the SSD controller, to predict fail cells and replace them proactively - before actual failure- by redundancy. With the Invalid Masking technique, predicted cells are marked in-place within the page, so that no extra address table is needed. Thus, with ninimal overhead, 2.85x bit error rate reduction or 13x endurance improvement is obtained based on a 50nm AlxOy testchip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology Trends and Near-Future Applications of Embedded STT-MRAM Junction Optimization for Embedded 40nm FN/FN Flash Memory Thin-Silicon Injector (TSI): An All-Silicon Engineered Barrier, Highly Nonlinear Selector for High Density Resistive RAM Applications Integration and Electrical Evaluation of Epitaxially Grown Si and SiGe Channels for Vertical NAND Memory Applications Critical ReRAM Stack Parameters Controlling Complimentary versus Bipolar Resistive Switching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1