碳基SOGs在CMOS双金属电路中的场反转

D. Pramanik, S. Nariani, G. Spadini
{"title":"碳基SOGs在CMOS双金属电路中的场反转","authors":"D. Pramanik, S. Nariani, G. Spadini","doi":"10.1109/VMIC.1989.78037","DOIUrl":null,"url":null,"abstract":"The authors have shown that under certain conditions carbon-based spin-on-glasses (SOGs) can cause field inversion leading to failure of devices. The authors formulate a model that explains the leakage. On the basis of this model it is possible to use the carbon-based SOGs in double-metal circuits without field inversion by restricting the amount of SOG by doing an etchback and using a passivation that does not liberate H, such as oxynitride or oxide. Some of the recent dielectric deposition systems can deposit nitride films that evolve little to no H on annealing. It is possible to use inorganic SOGs such as phosphorus-doped silicates and not have the problem at all. However, the issue of cracking with these SOGs is always of concern for reliability. The model raises concerns about the presence of organic compounds in the intermetal dielectric either through the use of organic reactants such as TEOS or inadvertently through the incomplete removal of photoresist during some of the masking steps.<<ETX>>","PeriodicalId":302853,"journal":{"name":"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Field inversion in CMOS double metal circuits due to carbon based SOGs\",\"authors\":\"D. Pramanik, S. Nariani, G. Spadini\",\"doi\":\"10.1109/VMIC.1989.78037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have shown that under certain conditions carbon-based spin-on-glasses (SOGs) can cause field inversion leading to failure of devices. The authors formulate a model that explains the leakage. On the basis of this model it is possible to use the carbon-based SOGs in double-metal circuits without field inversion by restricting the amount of SOG by doing an etchback and using a passivation that does not liberate H, such as oxynitride or oxide. Some of the recent dielectric deposition systems can deposit nitride films that evolve little to no H on annealing. It is possible to use inorganic SOGs such as phosphorus-doped silicates and not have the problem at all. However, the issue of cracking with these SOGs is always of concern for reliability. The model raises concerns about the presence of organic compounds in the intermetal dielectric either through the use of organic reactants such as TEOS or inadvertently through the incomplete removal of photoresist during some of the masking steps.<<ETX>>\",\"PeriodicalId\":302853,\"journal\":{\"name\":\"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VMIC.1989.78037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., Sixth International IEEE VLSI Multilevel Interconnection Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VMIC.1989.78037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

作者已经证明,在某些条件下,碳基自旋玻璃(SOGs)会引起场反转,导致器件失效。作者建立了一个解释泄漏的模型。在此模型的基础上,可以在双金属电路中使用碳基SOG,通过进行腐蚀和使用不释放H的钝化(如氮化氧或氧化物)来限制SOG的数量,而不发生场反转。最近的一些介电沉积系统可以沉积氮化膜,在退火时几乎不产生H。有可能使用无机sog,如磷掺杂硅酸盐,而根本没有这个问题。然而,这些sog的开裂问题总是与可靠性有关。该模型引起了人们对金属间电介质中存在有机化合物的担忧,要么是通过使用有机反应物(如TEOS),要么是在某些掩蔽步骤中无意中不完全去除光刻胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Field inversion in CMOS double metal circuits due to carbon based SOGs
The authors have shown that under certain conditions carbon-based spin-on-glasses (SOGs) can cause field inversion leading to failure of devices. The authors formulate a model that explains the leakage. On the basis of this model it is possible to use the carbon-based SOGs in double-metal circuits without field inversion by restricting the amount of SOG by doing an etchback and using a passivation that does not liberate H, such as oxynitride or oxide. Some of the recent dielectric deposition systems can deposit nitride films that evolve little to no H on annealing. It is possible to use inorganic SOGs such as phosphorus-doped silicates and not have the problem at all. However, the issue of cracking with these SOGs is always of concern for reliability. The model raises concerns about the presence of organic compounds in the intermetal dielectric either through the use of organic reactants such as TEOS or inadvertently through the incomplete removal of photoresist during some of the masking steps.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric film deposition by atmospheric pressure and low temperature CVD using TEOS, ozone, and new organometallic doping sources Characteristics of a poly-silicon contact plug technology Copper as the future interconnection material Advanced interconnection technologies and system-level communications functions Corrosion characteristics of metallization systems with XRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1