展台融合:有效的位融合乘数与展台编码

Seokho Lee, Youngmin Kim
{"title":"展台融合:有效的位融合乘数与展台编码","authors":"Seokho Lee, Youngmin Kim","doi":"10.1109/ISOCC50952.2020.9332943","DOIUrl":null,"url":null,"abstract":"Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Booth Fusion: Efficient Bit Fusion Multiplier with Booth Encoding\",\"authors\":\"Seokho Lee, Youngmin Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9332943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人们尝试通过各种硬件加速方法来优化深度神经网络(dnn)。其中,Bit Fusion是一种动态比特级融合/分解硬件架构。我们引入了一种新的模型结构,Booth Fusion,它通过实现Bit Fusion和Booth编码来提高动态比特级操作的效率。我们的设计显示LUT的数量提高了16.4%,吞吐量提高了14.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Booth Fusion: Efficient Bit Fusion Multiplier with Booth Encoding
Recently, several attempts have been made to optimize Deep Neural Networks (DNNs) through various hardware acceleration methods. Among them, Bit Fusion, the dynamic bit-level fusion/decomposition hardware architecture, was noted. We introduce a new model structure, Booth Fusion, which makes dynamic bit-level operations more efficient by implementing Bit Fusion with booth encoding. Our design shows improvements in 16.4% for the number of LUT and 14.2% for throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1