基于神经网络的鲁棒多视角行人跟踪

Md. Zahangir Alom, T. Taha
{"title":"基于神经网络的鲁棒多视角行人跟踪","authors":"Md. Zahangir Alom, T. Taha","doi":"10.1109/NAECON.2017.8268718","DOIUrl":null,"url":null,"abstract":"In this paper, we present a real-time robust multi-view pedestrian detection and tracking system for video using neural networks which can be used in dynamic environments. The proposed system consists of two phases: multi-view pedestrian detection and tracking. First, pedestrian detection utilizes background subtraction to segment the foreground objects. An adaptive background subtraction method where each of the pixel of input image models as a mixture of Gaussians and uses an on-line approximation to update the model applies to extract the foreground region. The Gaussian distributions are then evaluated to determine which are most likely to result from a background process. This method produces a steady, real-time tracker in indoor and outdoor environment that consistently deals with changes of lighting condition, and long-term scene change. Second, the tracking is performed at two steps: pedestrian classification and tracking of the individual subject. A sliding window technique is used on foreground binary image which uses for determining the input target patches from input frame. The neural networks is applied for classification with PHOG features of the target patches. Finally, a Kalman filter is applied to calculate the subsequent step for tracking that aims at finding the exact position of pedestrians in an input video frames. The experimental result shows that the proposed approach yields promising performance on multi-view pedestrian detection and tracking on different benchmark datasets.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust multi-view pedestrian tracking using neural networks\",\"authors\":\"Md. Zahangir Alom, T. Taha\",\"doi\":\"10.1109/NAECON.2017.8268718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a real-time robust multi-view pedestrian detection and tracking system for video using neural networks which can be used in dynamic environments. The proposed system consists of two phases: multi-view pedestrian detection and tracking. First, pedestrian detection utilizes background subtraction to segment the foreground objects. An adaptive background subtraction method where each of the pixel of input image models as a mixture of Gaussians and uses an on-line approximation to update the model applies to extract the foreground region. The Gaussian distributions are then evaluated to determine which are most likely to result from a background process. This method produces a steady, real-time tracker in indoor and outdoor environment that consistently deals with changes of lighting condition, and long-term scene change. Second, the tracking is performed at two steps: pedestrian classification and tracking of the individual subject. A sliding window technique is used on foreground binary image which uses for determining the input target patches from input frame. The neural networks is applied for classification with PHOG features of the target patches. Finally, a Kalman filter is applied to calculate the subsequent step for tracking that aims at finding the exact position of pedestrians in an input video frames. The experimental result shows that the proposed approach yields promising performance on multi-view pedestrian detection and tracking on different benchmark datasets.\",\"PeriodicalId\":306091,\"journal\":{\"name\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2017.8268718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于神经网络的实时鲁棒多视角视频行人检测与跟踪系统,该系统可用于动态环境。该系统包括两个阶段:多视角行人检测和跟踪。首先,行人检测利用背景减法分割前景目标。将输入图像的每个像素作为高斯模型的混合,并使用在线逼近来更新模型的自适应背景相减方法适用于提取前景区域。然后对高斯分布进行评估,以确定哪些最可能是由背景过程产生的。该方法产生了一个稳定的、实时的室内和室外环境跟踪器,可以一致地处理照明条件的变化和长期的场景变化。其次,跟踪分两步进行:行人分类和个体跟踪。对前景二值图像采用滑动窗口技术,从输入帧中确定输入目标块。利用目标patch的PHOG特征,应用神经网络进行分类。最后,应用卡尔曼滤波器计算跟踪的后续步骤,目的是在输入视频帧中找到行人的确切位置。实验结果表明,该方法在不同基准数据集上的多视图行人检测和跟踪性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust multi-view pedestrian tracking using neural networks
In this paper, we present a real-time robust multi-view pedestrian detection and tracking system for video using neural networks which can be used in dynamic environments. The proposed system consists of two phases: multi-view pedestrian detection and tracking. First, pedestrian detection utilizes background subtraction to segment the foreground objects. An adaptive background subtraction method where each of the pixel of input image models as a mixture of Gaussians and uses an on-line approximation to update the model applies to extract the foreground region. The Gaussian distributions are then evaluated to determine which are most likely to result from a background process. This method produces a steady, real-time tracker in indoor and outdoor environment that consistently deals with changes of lighting condition, and long-term scene change. Second, the tracking is performed at two steps: pedestrian classification and tracking of the individual subject. A sliding window technique is used on foreground binary image which uses for determining the input target patches from input frame. The neural networks is applied for classification with PHOG features of the target patches. Finally, a Kalman filter is applied to calculate the subsequent step for tracking that aims at finding the exact position of pedestrians in an input video frames. The experimental result shows that the proposed approach yields promising performance on multi-view pedestrian detection and tracking on different benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and analysis of wafer-level vacuum-encapsulated disk resonator gyroscope using a commercial MEMS process Visible but transparent hardware Trojans in clock generation circuits Memristor crossbar based implementation of a multilayer perceptron Design of tunable shunt and series interdigital capacitors based on vanadium dioxide thin film A novel hybrid delay based physical unclonable function immune to machine learning attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1