{"title":"遗传算法在非解析解控制器优化问题中的应用","authors":"Richard, Hull, Roger W. Johhnson","doi":"10.1109/SOUTHC.1994.498093","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) offer a numerical search method which does not require a statement of the mathematical relationship between the performance criteria and the parameter update rule. The objective of this study is to demonstrate that GAs provide a method of optimizing control system problems with analytically intractable constraints. A linear missile airframe and actuator state space model is developed, and a reduced order linear feedback controller is implemented. A genetic algorithm is constructed to optimize the controller parameters, first with respect to a weighted linear quadratic performance index. Penalty functions are then developed to introduce performance constraints on the maximum rise time, allowable settling error, and peak actuator effort.","PeriodicalId":164672,"journal":{"name":"Conference Record Southcon","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic algorithm application to controller optimization problems with non-analytic solutions\",\"authors\":\"Richard, Hull, Roger W. Johhnson\",\"doi\":\"10.1109/SOUTHC.1994.498093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithms (GAs) offer a numerical search method which does not require a statement of the mathematical relationship between the performance criteria and the parameter update rule. The objective of this study is to demonstrate that GAs provide a method of optimizing control system problems with analytically intractable constraints. A linear missile airframe and actuator state space model is developed, and a reduced order linear feedback controller is implemented. A genetic algorithm is constructed to optimize the controller parameters, first with respect to a weighted linear quadratic performance index. Penalty functions are then developed to introduce performance constraints on the maximum rise time, allowable settling error, and peak actuator effort.\",\"PeriodicalId\":164672,\"journal\":{\"name\":\"Conference Record Southcon\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record Southcon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOUTHC.1994.498093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record Southcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOUTHC.1994.498093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithm application to controller optimization problems with non-analytic solutions
Genetic algorithms (GAs) offer a numerical search method which does not require a statement of the mathematical relationship between the performance criteria and the parameter update rule. The objective of this study is to demonstrate that GAs provide a method of optimizing control system problems with analytically intractable constraints. A linear missile airframe and actuator state space model is developed, and a reduced order linear feedback controller is implemented. A genetic algorithm is constructed to optimize the controller parameters, first with respect to a weighted linear quadratic performance index. Penalty functions are then developed to introduce performance constraints on the maximum rise time, allowable settling error, and peak actuator effort.