基于机器学习和统计监测图的风力发电机传感器故障检测

F. Harrou, Benamar Bouyeddou, Ying Sun
{"title":"基于机器学习和统计监测图的风力发电机传感器故障检测","authors":"F. Harrou, Benamar Bouyeddou, Ying Sun","doi":"10.1109/PHM58589.2023.00069","DOIUrl":null,"url":null,"abstract":"This study proposes a machine learning-based approach for detecting sensor faults in wind turbines. The approach combines the Gaussian process regression (GPR) model and the Exponentially Weighted Moving Average (EWMA) monitoring chart, which provides sensitivity in detecting small shifts in the process mean. The detection threshold is computed using Kernel Density Estimation, which adds flexibility to the EWMA chart. We adopted Bayesian optimization to optimize the hyperparameters of the GPR model based on anomaly-free data. The proposed approach is tested on different sensor faults and compared with support Vector regression-based methods. The results show that the proposed approach effectively detects various types of sensor faults, including sensor faults in pitch angle measurement and generator speed measurement, and outperforms the support Vector regression-based approach.","PeriodicalId":196601,"journal":{"name":"2023 Prognostics and Health Management Conference (PHM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor Fault Detection in Wind Turbines Using Machine Learning and Statistical Monitoring Chart\",\"authors\":\"F. Harrou, Benamar Bouyeddou, Ying Sun\",\"doi\":\"10.1109/PHM58589.2023.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a machine learning-based approach for detecting sensor faults in wind turbines. The approach combines the Gaussian process regression (GPR) model and the Exponentially Weighted Moving Average (EWMA) monitoring chart, which provides sensitivity in detecting small shifts in the process mean. The detection threshold is computed using Kernel Density Estimation, which adds flexibility to the EWMA chart. We adopted Bayesian optimization to optimize the hyperparameters of the GPR model based on anomaly-free data. The proposed approach is tested on different sensor faults and compared with support Vector regression-based methods. The results show that the proposed approach effectively detects various types of sensor faults, including sensor faults in pitch angle measurement and generator speed measurement, and outperforms the support Vector regression-based approach.\",\"PeriodicalId\":196601,\"journal\":{\"name\":\"2023 Prognostics and Health Management Conference (PHM)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Prognostics and Health Management Conference (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM58589.2023.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Prognostics and Health Management Conference (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM58589.2023.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于机器学习的方法来检测风力涡轮机传感器故障。该方法将高斯过程回归(GPR)模型与指数加权移动平均(EWMA)监测图相结合,在检测过程均值的小位移方面具有较高的灵敏度。检测阈值使用核密度估计计算,这增加了EWMA图的灵活性。采用贝叶斯优化方法对无异常GPR模型的超参数进行优化。在不同的传感器故障情况下对该方法进行了测试,并与基于支持向量回归的方法进行了比较。结果表明,该方法能够有效检测各种类型的传感器故障,包括俯仰角测量和发电机转速测量中的传感器故障,并且优于基于支持向量回归的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Fault Detection in Wind Turbines Using Machine Learning and Statistical Monitoring Chart
This study proposes a machine learning-based approach for detecting sensor faults in wind turbines. The approach combines the Gaussian process regression (GPR) model and the Exponentially Weighted Moving Average (EWMA) monitoring chart, which provides sensitivity in detecting small shifts in the process mean. The detection threshold is computed using Kernel Density Estimation, which adds flexibility to the EWMA chart. We adopted Bayesian optimization to optimize the hyperparameters of the GPR model based on anomaly-free data. The proposed approach is tested on different sensor faults and compared with support Vector regression-based methods. The results show that the proposed approach effectively detects various types of sensor faults, including sensor faults in pitch angle measurement and generator speed measurement, and outperforms the support Vector regression-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOA analysis of large hydropower station Generating High-Resolution Flight Parameters in Structural Digital Twins Using Deep Learning-based Upsampling Problem Decoupling and Optimization of Aeroengine Life Cycle Maintenance Decision State-of-health prediction of Li-ion NMC Batteries Using Kalman Filter and Gaussian Process Regression An efficient algorithm for task allocation with multi-agent collaboration constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1