MODSiam:移动目标检测使用暹罗网络

Islam I. Osman, M. Shehata
{"title":"MODSiam:移动目标检测使用暹罗网络","authors":"Islam I. Osman, M. Shehata","doi":"10.1109/CCECE47787.2020.9255776","DOIUrl":null,"url":null,"abstract":"Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODSiam: Moving Object Detection using Siamese Networks\",\"authors\":\"Islam I. Osman, M. Shehata\",\"doi\":\"10.1109/CCECE47787.2020.9255776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

运动目标检测是计算机视觉中一个具有挑战性的课题。我们学习了一个类不可知模型来检测视频中移动的物体,不管它们的类别是什么。这是使用提议的MODSiam完成的,该MODSiam将场景的单个背景图像和当前帧作为输入,然后模型从两个输入中提取特征并合并然后输出前景对象。将该模型应用于三种不同的骨干卷积神经网络进行了比较。评估使用指标精度、召回率、f1测量、假阳性率、假阴性率、特异性、准确性和每秒帧数来完成。所有模型都在基准数据集CDNet上进行了测试,这是一个在低帧率、阴影和动态背景等不同条件下移动物体的视频数据集。结果表明,在大多数评估指标方面,与其他模型相比,使用ResNet作为主干产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MODSiam: Moving Object Detection using Siamese Networks
Moving object detection is a challenging task in computer vision. A class agnostic model is learned to detect moving objects in a video despite their category. This is done using the proposed MODSiam that takes a single background image of the scene and the current frame as input, then the model extracts features from both inputs and merges then to output the foreground objects. A comparison of using this model with three different backbone convolutional neural networks is presented. The evaluation is done using the metrics precision, recall, F1-measure, false-positive rate, false-negative rate, specificity, accuracy, and the number of frames per second. All models are tested on the benchmark dataset CDNet, which is a dataset of videos for moving objects under different conditions like low frame rate, shadows, and dynamic background. The results show that using ResNet as a backbone produced promising results compared to other models with respect to most of evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Control of Force, Position, and Contour for an Excavator with Co-simulation Dual-Modality Cardiac Data Real-Time Rendering and Synchronization in Web Browsers FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis A New Capacitive MEMS Flow Sensor for Industrial Gas Transport Monitoring Applications Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1