{"title":"基于cnn的图像无损编码预测","authors":"I. Schiopu, Yu Liu, A. Munteanu","doi":"10.1109/PCS.2018.8456311","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"CNN-based Prediction for Lossless Coding of Photographic Images\",\"authors\":\"I. Schiopu, Yu Liu, A. Munteanu\",\"doi\":\"10.1109/PCS.2018.8456311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CNN-based Prediction for Lossless Coding of Photographic Images
The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.