基于cnn的图像无损编码预测

I. Schiopu, Yu Liu, A. Munteanu
{"title":"基于cnn的图像无损编码预测","authors":"I. Schiopu, Yu Liu, A. Munteanu","doi":"10.1109/PCS.2018.8456311","DOIUrl":null,"url":null,"abstract":"The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"CNN-based Prediction for Lossless Coding of Photographic Images\",\"authors\":\"I. Schiopu, Yu Liu, A. Munteanu\",\"doi\":\"10.1109/PCS.2018.8456311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于卷积神经网络(CNN)的图像编码预测范式。深度神经网络被设计用于基于因果邻域提供精确的逐像素预测。提出的CNN预测方法对图像中的高活动区域进行训练,并将其纳入高分辨率摄影图像的无损压缩系统中。该系统使用提出的基于cnn的预测范式以及LOCO-I,其中预测器选择使用基于局部熵的描述符执行。使用基于calic的参考编解码器对预测误差进行编码。实验结果表明,与现有的预测器相比,所提出的预测方案具有良好的性能。据我们所知,这篇论文首次将基于cnn的预测引入到图像编码中,并展示了机器学习方法在编码应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-based Prediction for Lossless Coding of Photographic Images
The paper proposes a novel prediction paradigm in image coding based on Convolutional Neural Networks (CNN). A deep neural network is designed to provide accurate pixel-wise prediction based on a causal neighbourhood. The proposed CNN prediction method is trained on the high-activity areas in the image and it is incorporated in a lossless compression system for high-resolution photographic images. The system uses the proposed CNN-based prediction paradigm as well as LOCO-I, whereby the predictor selection is performed using a local entropy-based descriptor. The prediction errors are encoded using a CALIC-based reference codec. The experimental results show a good performance for the proposed prediction scheme compared to state-of-the-art predictors. To our knowledge, the paper is the first to introduce CNN-based prediction in image coding, and demonstrates the potential offered by machine learning methods in coding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1