在高层通信链路中反向注释的串扰故障模型

Katayoon Basharkhah, Rezgar Sadeghi, Nooshin Nosrati, Z. Navabi
{"title":"在高层通信链路中反向注释的串扰故障模型","authors":"Katayoon Basharkhah, Rezgar Sadeghi, Nooshin Nosrati, Z. Navabi","doi":"10.1109/VTS48691.2020.9107612","DOIUrl":null,"url":null,"abstract":"At the system-level, cores are put together using interconnects that we refer to as high-level communication links. This paper presents an abstract interconnect model for cores connecting to each other to estimate, and thus model, crosstalk noise resulting from the physical properties of interconnects. Such models consider the effects of adjacent wires on each other in the form of weighted transitions. Transition weights are extracted by DC analysis of interconnect SPICE models. These weights form our raw-models, which are then specialized by AC analysis of RLC interconnect models in a mixed-signal simulation environment. The latter analyses establish weight thresholds for glitch faults. Our simulations show that if we were to use only DC-based models for crosstalk faults, we would be over / under-estimating faults as compared with models that are specialized by AC simulation runs. For higher data rates, Specialized models perform an order of magnitude better than DC-based models for crosstalk fault detection.","PeriodicalId":326132,"journal":{"name":"2020 IEEE 38th VLSI Test Symposium (VTS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ESL, Back-annotating Crosstalk Fault Models into High-level Communication Links\",\"authors\":\"Katayoon Basharkhah, Rezgar Sadeghi, Nooshin Nosrati, Z. Navabi\",\"doi\":\"10.1109/VTS48691.2020.9107612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the system-level, cores are put together using interconnects that we refer to as high-level communication links. This paper presents an abstract interconnect model for cores connecting to each other to estimate, and thus model, crosstalk noise resulting from the physical properties of interconnects. Such models consider the effects of adjacent wires on each other in the form of weighted transitions. Transition weights are extracted by DC analysis of interconnect SPICE models. These weights form our raw-models, which are then specialized by AC analysis of RLC interconnect models in a mixed-signal simulation environment. The latter analyses establish weight thresholds for glitch faults. Our simulations show that if we were to use only DC-based models for crosstalk faults, we would be over / under-estimating faults as compared with models that are specialized by AC simulation runs. For higher data rates, Specialized models perform an order of magnitude better than DC-based models for crosstalk fault detection.\",\"PeriodicalId\":326132,\"journal\":{\"name\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 38th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS48691.2020.9107612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 38th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS48691.2020.9107612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在系统级,核心通过我们称之为高级通信链路的互连连接在一起。本文提出了一种抽象的互连模型,用于相互连接的核心估计,从而建模互连物理性质引起的串扰噪声。这些模型以加权过渡的形式考虑相邻导线对彼此的影响。通过对互连SPICE模型的直流分析提取过渡权。这些权重构成了我们的原始模型,然后在混合信号仿真环境中对RLC互连模型进行交流分析。后者的分析建立了小故障的权值。我们的模拟表明,如果我们只使用基于直流的串扰故障模型,与专用于交流仿真运行的模型相比,我们将高估/低估故障。对于更高的数据速率,Specialized模型在串扰故障检测方面的表现比基于dc的模型好一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESL, Back-annotating Crosstalk Fault Models into High-level Communication Links
At the system-level, cores are put together using interconnects that we refer to as high-level communication links. This paper presents an abstract interconnect model for cores connecting to each other to estimate, and thus model, crosstalk noise resulting from the physical properties of interconnects. Such models consider the effects of adjacent wires on each other in the form of weighted transitions. Transition weights are extracted by DC analysis of interconnect SPICE models. These weights form our raw-models, which are then specialized by AC analysis of RLC interconnect models in a mixed-signal simulation environment. The latter analyses establish weight thresholds for glitch faults. Our simulations show that if we were to use only DC-based models for crosstalk faults, we would be over / under-estimating faults as compared with models that are specialized by AC simulation runs. For higher data rates, Specialized models perform an order of magnitude better than DC-based models for crosstalk fault detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SNIFU: Secure Network Interception for Firmware Updates in legacy PLCs A Deterministic-Statistical Multiple-Defect Diagnosis Methodology Innovative Practice on Wafer Test Innovations Ultra-Wideband Modulation Signal Measurement Using Local Sweep Digitizing Method ATTEST: Application-Agnostic Testing of a Novel Transistor-Level Programmable Fabric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1