Kendra Young, R. Aspandiar, Nilesh Badwe, S. Walwadkar, Young-woo Lee, Tae-Kyu Lee
{"title":"低温焊点热循环诱导互连稳定性退化机制","authors":"Kendra Young, R. Aspandiar, Nilesh Badwe, S. Walwadkar, Young-woo Lee, Tae-Kyu Lee","doi":"10.1109/ectc51906.2022.00192","DOIUrl":null,"url":null,"abstract":"With the increase of interest in low melting temperature solder alloys, in recent studies on Sn-Bi based system solder show relatively good thermal cycling performances comparable to conventional Sn-Ag-Cu based solder interconnects at a given thermal cycling profile. Sn-Bi eutectic system microstructures are similar to Sn-Pb eutectic microstructure but have different damage accumulation mechanism due to Bi crystal lattice with Rhombohedral A7 unit cell structure, which is less ductile compared to Sn-Pb, where Pb has face centered cubic crystal lattice. The nature of less ductility in Sn-Bi alloy system reveals a different damage accumulation process during thermal cycling compared to Sn-Ag-Cu solder material, although the thermal cycling performance is comparable with micro-elementalloying. To identify the degradation mechanism in Sn-Bi solder interconnects, the study presented here is a series of microstructure analysis on segmented thermal cycling completed components, which reveal gradual and localized microstructure evolution. 12x12 mm2 chip array BGA (CABGA) components were thermal cycled with a -40 to 100°C cycle profile and a 10min dwell time. The microstructure developments per component were analyzed with 200-250 cycles interval cross-sections until both Sn- Ag-Cu and Sn-Bi solder joints reached to full failure. The correlation between crack initiation, crack propagation and localized recrystallization were compared in a series of cross section analyses using polarized imaging and Electron- backscattered diffraction (EBSD) based strain and residual stress analysis. The analysis revealed the potential damage accumulation process in Sn-Bi solder joint under thermal cycling, which is discussed in this paper.","PeriodicalId":139520,"journal":{"name":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal cycling induced interconnect stability degradation mechanism in low melting temperature solder joints\",\"authors\":\"Kendra Young, R. Aspandiar, Nilesh Badwe, S. Walwadkar, Young-woo Lee, Tae-Kyu Lee\",\"doi\":\"10.1109/ectc51906.2022.00192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of interest in low melting temperature solder alloys, in recent studies on Sn-Bi based system solder show relatively good thermal cycling performances comparable to conventional Sn-Ag-Cu based solder interconnects at a given thermal cycling profile. Sn-Bi eutectic system microstructures are similar to Sn-Pb eutectic microstructure but have different damage accumulation mechanism due to Bi crystal lattice with Rhombohedral A7 unit cell structure, which is less ductile compared to Sn-Pb, where Pb has face centered cubic crystal lattice. The nature of less ductility in Sn-Bi alloy system reveals a different damage accumulation process during thermal cycling compared to Sn-Ag-Cu solder material, although the thermal cycling performance is comparable with micro-elementalloying. To identify the degradation mechanism in Sn-Bi solder interconnects, the study presented here is a series of microstructure analysis on segmented thermal cycling completed components, which reveal gradual and localized microstructure evolution. 12x12 mm2 chip array BGA (CABGA) components were thermal cycled with a -40 to 100°C cycle profile and a 10min dwell time. The microstructure developments per component were analyzed with 200-250 cycles interval cross-sections until both Sn- Ag-Cu and Sn-Bi solder joints reached to full failure. The correlation between crack initiation, crack propagation and localized recrystallization were compared in a series of cross section analyses using polarized imaging and Electron- backscattered diffraction (EBSD) based strain and residual stress analysis. The analysis revealed the potential damage accumulation process in Sn-Bi solder joint under thermal cycling, which is discussed in this paper.\",\"PeriodicalId\":139520,\"journal\":{\"name\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc51906.2022.00192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 72nd Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc51906.2022.00192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal cycling induced interconnect stability degradation mechanism in low melting temperature solder joints
With the increase of interest in low melting temperature solder alloys, in recent studies on Sn-Bi based system solder show relatively good thermal cycling performances comparable to conventional Sn-Ag-Cu based solder interconnects at a given thermal cycling profile. Sn-Bi eutectic system microstructures are similar to Sn-Pb eutectic microstructure but have different damage accumulation mechanism due to Bi crystal lattice with Rhombohedral A7 unit cell structure, which is less ductile compared to Sn-Pb, where Pb has face centered cubic crystal lattice. The nature of less ductility in Sn-Bi alloy system reveals a different damage accumulation process during thermal cycling compared to Sn-Ag-Cu solder material, although the thermal cycling performance is comparable with micro-elementalloying. To identify the degradation mechanism in Sn-Bi solder interconnects, the study presented here is a series of microstructure analysis on segmented thermal cycling completed components, which reveal gradual and localized microstructure evolution. 12x12 mm2 chip array BGA (CABGA) components were thermal cycled with a -40 to 100°C cycle profile and a 10min dwell time. The microstructure developments per component were analyzed with 200-250 cycles interval cross-sections until both Sn- Ag-Cu and Sn-Bi solder joints reached to full failure. The correlation between crack initiation, crack propagation and localized recrystallization were compared in a series of cross section analyses using polarized imaging and Electron- backscattered diffraction (EBSD) based strain and residual stress analysis. The analysis revealed the potential damage accumulation process in Sn-Bi solder joint under thermal cycling, which is discussed in this paper.