面向多目标机器人操作的密集目标网络的高效鲁棒训练

David B. Adrian, A. Kupcsik, Markus Spies, H. Neumann
{"title":"面向多目标机器人操作的密集目标网络的高效鲁棒训练","authors":"David B. Adrian, A. Kupcsik, Markus Spies, H. Neumann","doi":"10.48550/arXiv.2206.12145","DOIUrl":null,"url":null,"abstract":"We propose a framework for robust and efficient training of Dense Object Nets (DON) [1] with a focus on industrial multi-object robot manipulation scenarios. DON is a popular approach to obtain dense, view-invariant object descriptors, which can be used for a multitude of downstream tasks in robot manipulation, such as, pose estimation, state representation for control, etc. However, the original work [1] focused training on singulated objects, with limited results on instance-specific, multi-object applications. Additionally, a complex data collection pipeline, including 3D reconstruction and mask annotation of each object, is required for training. In this paper, we further improve the efficacy of DON with a simplified data collection and training regime, that consistently yields higher precision and enables robust tracking of keypoints with less data requirements. In particular, we focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme. We additionally propose an alternative loss formulation to the original pixel wise formulation that offers better results and is less sensitive to hyperparameters. Finally, we demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient and Robust Training of Dense Object Nets for Multi-Object Robot Manipulation\",\"authors\":\"David B. Adrian, A. Kupcsik, Markus Spies, H. Neumann\",\"doi\":\"10.48550/arXiv.2206.12145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework for robust and efficient training of Dense Object Nets (DON) [1] with a focus on industrial multi-object robot manipulation scenarios. DON is a popular approach to obtain dense, view-invariant object descriptors, which can be used for a multitude of downstream tasks in robot manipulation, such as, pose estimation, state representation for control, etc. However, the original work [1] focused training on singulated objects, with limited results on instance-specific, multi-object applications. Additionally, a complex data collection pipeline, including 3D reconstruction and mask annotation of each object, is required for training. In this paper, we further improve the efficacy of DON with a simplified data collection and training regime, that consistently yields higher precision and enables robust tracking of keypoints with less data requirements. In particular, we focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme. We additionally propose an alternative loss formulation to the original pixel wise formulation that offers better results and is less sensitive to hyperparameters. Finally, we demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.\",\"PeriodicalId\":341244,\"journal\":{\"name\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.12145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.12145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个框架,用于密集对象网络(DON)的鲁棒和高效训练[1],重点关注工业多目标机器人操作场景。DON是一种获得密集的、视图不变的对象描述符的流行方法,它可以用于机器人操作中的大量下游任务,例如姿态估计、控制的状态表示等。然而,最初的工作[1]侧重于单一对象的训练,在特定于实例的多对象应用上的结果有限。此外,训练还需要一个复杂的数据收集管道,包括每个对象的3D重建和掩码注释。在本文中,我们通过简化的数据收集和训练制度进一步提高了DON的有效性,该制度始终产生更高的精度,并以更少的数据需求实现对关键点的鲁棒跟踪。特别是,我们专注于使用多目标数据而不是单一对象进行训练,并结合精心选择的增强方案。我们还提出了一种替代损失公式,以替代原始的像素明智公式,该公式提供了更好的结果,并且对超参数不那么敏感。最后,我们在一个真实的机器人抓取任务上证明了我们提出的框架的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient and Robust Training of Dense Object Nets for Multi-Object Robot Manipulation
We propose a framework for robust and efficient training of Dense Object Nets (DON) [1] with a focus on industrial multi-object robot manipulation scenarios. DON is a popular approach to obtain dense, view-invariant object descriptors, which can be used for a multitude of downstream tasks in robot manipulation, such as, pose estimation, state representation for control, etc. However, the original work [1] focused training on singulated objects, with limited results on instance-specific, multi-object applications. Additionally, a complex data collection pipeline, including 3D reconstruction and mask annotation of each object, is required for training. In this paper, we further improve the efficacy of DON with a simplified data collection and training regime, that consistently yields higher precision and enables robust tracking of keypoints with less data requirements. In particular, we focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme. We additionally propose an alternative loss formulation to the original pixel wise formulation that offers better results and is less sensitive to hyperparameters. Finally, we demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1