含频带结构效应的GAA纳米线MOSFET弹道电流解析模型:在环形振荡器中的应用

J. Dura, S. Martinie, D. Munteanu, F. Triozon, S. Barraud, Y. Niquet, J. Barbe, J. Autran
{"title":"含频带结构效应的GAA纳米线MOSFET弹道电流解析模型:在环形振荡器中的应用","authors":"J. Dura, S. Martinie, D. Munteanu, F. Triozon, S. Barraud, Y. Niquet, J. Barbe, J. Autran","doi":"10.1109/ULIS.2011.5758018","DOIUrl":null,"url":null,"abstract":"Gate-All-Around (GAA) nanowire architecture is aimed to represent the ultimate integration for MOSFET up to dimensions of several nanometers. Very thin nanowires (< 5 nm) are expected to be used in these ultimate devices, for which a new physical phenomenon emerges: the modification of the band structure compared to bulk silicon, which changes the conduction properties and affects the device characteristics. These band structure effects (BSE) are then expected to influence the performances of circuits based on ultra-thin nanowire GAA MOSFETs. In this paper, an analytical model for ballistic current in GAA nanowire MOSFET including the band structure variation is developed to assess the BSE impact on nanowire MOSFET operation. Results at the device level are successfully confronted and validated on numerical tight-binding simulations. The model is further implemented in a circuit simulator and is used to evaluate BSE impact on performances of ring oscillator based on GAA nanowire MOSFET.","PeriodicalId":146779,"journal":{"name":"Ulis 2011 Ultimate Integration on Silicon","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analytical model of ballistic current for GAA nanowire MOSFET including band structure effects: Application to ring oscillator\",\"authors\":\"J. Dura, S. Martinie, D. Munteanu, F. Triozon, S. Barraud, Y. Niquet, J. Barbe, J. Autran\",\"doi\":\"10.1109/ULIS.2011.5758018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gate-All-Around (GAA) nanowire architecture is aimed to represent the ultimate integration for MOSFET up to dimensions of several nanometers. Very thin nanowires (< 5 nm) are expected to be used in these ultimate devices, for which a new physical phenomenon emerges: the modification of the band structure compared to bulk silicon, which changes the conduction properties and affects the device characteristics. These band structure effects (BSE) are then expected to influence the performances of circuits based on ultra-thin nanowire GAA MOSFETs. In this paper, an analytical model for ballistic current in GAA nanowire MOSFET including the band structure variation is developed to assess the BSE impact on nanowire MOSFET operation. Results at the device level are successfully confronted and validated on numerical tight-binding simulations. The model is further implemented in a circuit simulator and is used to evaluate BSE impact on performances of ring oscillator based on GAA nanowire MOSFET.\",\"PeriodicalId\":146779,\"journal\":{\"name\":\"Ulis 2011 Ultimate Integration on Silicon\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ulis 2011 Ultimate Integration on Silicon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULIS.2011.5758018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ulis 2011 Ultimate Integration on Silicon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2011.5758018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

栅极全能(GAA)纳米线架构旨在代表MOSFET的最终集成,达到几纳米的尺寸。极细的纳米线(< 5nm)有望用于这些终极器件,因此出现了一种新的物理现象:与体硅相比,能带结构的改变改变了导电性能并影响了器件特性。这些带结构效应(BSE)预计将影响基于超薄纳米线GAA mosfet的电路性能。本文建立了GAA纳米线MOSFET中包含能带结构变化的弹道电流分析模型,以评估BSE对纳米线MOSFET工作的影响。器件级的结果在数值紧绑定模拟中得到了验证。该模型在电路模拟器中进一步实现,并用于评估BSE对基于GAA纳米线MOSFET的环形振荡器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical model of ballistic current for GAA nanowire MOSFET including band structure effects: Application to ring oscillator
Gate-All-Around (GAA) nanowire architecture is aimed to represent the ultimate integration for MOSFET up to dimensions of several nanometers. Very thin nanowires (< 5 nm) are expected to be used in these ultimate devices, for which a new physical phenomenon emerges: the modification of the band structure compared to bulk silicon, which changes the conduction properties and affects the device characteristics. These band structure effects (BSE) are then expected to influence the performances of circuits based on ultra-thin nanowire GAA MOSFETs. In this paper, an analytical model for ballistic current in GAA nanowire MOSFET including the band structure variation is developed to assess the BSE impact on nanowire MOSFET operation. Results at the device level are successfully confronted and validated on numerical tight-binding simulations. The model is further implemented in a circuit simulator and is used to evaluate BSE impact on performances of ring oscillator based on GAA nanowire MOSFET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical drain current model reproducing advanced transport models in nanoscale double-gate (DG) MOSFETs A simulation study of N-shell silicon nanowires as biological sensors Modeling of thermal network in silicon power MOSFETs 2D Analytical calculation of the source/drain access resistance in DG-MOSFET structures From bulk toward FDSOI and silicon nanowire transistors: Challenges and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1