节点攻击下电网中心性和电压稳定指标的鲁棒贝叶斯回归模型

D. Panda, Saptarshi Das
{"title":"节点攻击下电网中心性和电压稳定指标的鲁棒贝叶斯回归模型","authors":"D. Panda, Saptarshi Das","doi":"10.1109/REEPE51337.2021.9388045","DOIUrl":null,"url":null,"abstract":"Electrical node centrality for the power networks is an essential parameter to identify the critical nodes under attack. Topological analysis is vital for evaluating the network robustness while electrical characteristics have to be considered to make the analysis consistent for realistic power networks. However, the capacity limit of the power network changes under various nodal attacks. It is essential to find the relationship between the loading margin limit of the power network with the node centrality features, so that appropriate measures can be considered to improve the robustness of the power networks. Thus, voltage stability index (VSI) is defined for every node, and its centrality features are modelled. Robust Bayesian regression is used to model the nodes responsible for a change in loading margin and causing grid blackout. The method has been validated on benchmark complex power networks like reduced Great Britain network, IEEE 57-bus and IEEE 118-bus systems.","PeriodicalId":272476,"journal":{"name":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian Regression Model of Centrality and Voltage Stability Index for Power Networks under Nodal Attack\",\"authors\":\"D. Panda, Saptarshi Das\",\"doi\":\"10.1109/REEPE51337.2021.9388045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical node centrality for the power networks is an essential parameter to identify the critical nodes under attack. Topological analysis is vital for evaluating the network robustness while electrical characteristics have to be considered to make the analysis consistent for realistic power networks. However, the capacity limit of the power network changes under various nodal attacks. It is essential to find the relationship between the loading margin limit of the power network with the node centrality features, so that appropriate measures can be considered to improve the robustness of the power networks. Thus, voltage stability index (VSI) is defined for every node, and its centrality features are modelled. Robust Bayesian regression is used to model the nodes responsible for a change in loading margin and causing grid blackout. The method has been validated on benchmark complex power networks like reduced Great Britain network, IEEE 57-bus and IEEE 118-bus systems.\",\"PeriodicalId\":272476,\"journal\":{\"name\":\"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REEPE51337.2021.9388045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REEPE51337.2021.9388045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电网电节点中心性是识别受攻击关键节点的重要参数。拓扑分析是评价电网鲁棒性的重要手段,而为了使分析结果与实际电网相一致,必须考虑电网的电气特性。然而,在各种节点攻击下,电网的容量极限会发生变化。找出电网的负荷裕度限值与节点中心性特征之间的关系,以便考虑采取适当的措施来提高电网的鲁棒性。为此,定义每个节点的电压稳定指数(VSI),并对其中心性特征进行建模。采用鲁棒贝叶斯回归对负荷裕度变化引起电网停电的节点进行建模。该方法已在简化大不列颠电网、IEEE 57总线和IEEE 118总线系统等基准复杂电网上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Bayesian Regression Model of Centrality and Voltage Stability Index for Power Networks under Nodal Attack
Electrical node centrality for the power networks is an essential parameter to identify the critical nodes under attack. Topological analysis is vital for evaluating the network robustness while electrical characteristics have to be considered to make the analysis consistent for realistic power networks. However, the capacity limit of the power network changes under various nodal attacks. It is essential to find the relationship between the loading margin limit of the power network with the node centrality features, so that appropriate measures can be considered to improve the robustness of the power networks. Thus, voltage stability index (VSI) is defined for every node, and its centrality features are modelled. Robust Bayesian regression is used to model the nodes responsible for a change in loading margin and causing grid blackout. The method has been validated on benchmark complex power networks like reduced Great Britain network, IEEE 57-bus and IEEE 118-bus systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network in the Control Loop of a Wheeled Robot Impacts of COVID-19 on the Electrical Power Dynamics and Environment of Bangladesh Lightning Measurement in Sarawak, Malaysia: First Results Development of Approaches to Assessing the Actual Technical Condition of Steam Turbines Based on Reliability Indicators Energy efficient employment of Used Petroleum Products as fuel based on environmental norms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1