Langtao Chen, Xin Zhou, Ying Wang, Ying Kong, R. Xie, Ling Peng, Yantu Mo, M. Qiao, Bo Zhang
{"title":"基于0.18µm工艺技术的18V LDMOS单事件烧坏效应研究","authors":"Langtao Chen, Xin Zhou, Ying Wang, Ying Kong, R. Xie, Ling Peng, Yantu Mo, M. Qiao, Bo Zhang","doi":"10.1109/APCCAS55924.2022.10090399","DOIUrl":null,"url":null,"abstract":"In this paper, single event burnout (SEB) effect is investigated for 18V Lateral-diffused MOS (LDMOS) based on 0.18µm process technology. The SEB mechanism is revealed that parasitic bipolar turn-on and the self-maintaining induced by avalanche ionization. At early stage, heavy ion induced ionized holes inject into the P-body (PB) region, giving rise to the parasitic bipolar turn-on. Electrons from the source are allowed to flow to the drain, and exert modulation on electric field profile. Due to field peak formed at drain side, avalanche ionization induced holes provide a supplement for base current of the parasitic bipolar. A positive feedback of holes between the parasitic bipolar and avalanche is responsible for the SEB effect. Multi-implantation radiation hardening technology is proposed to reduce PB region resistance and suppress parasitic bipolar opened, while eliminate the impact on threshold voltage.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Single Event Burnout Effect for 18V LDMOS Based on 0.18µm Process Technology\",\"authors\":\"Langtao Chen, Xin Zhou, Ying Wang, Ying Kong, R. Xie, Ling Peng, Yantu Mo, M. Qiao, Bo Zhang\",\"doi\":\"10.1109/APCCAS55924.2022.10090399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, single event burnout (SEB) effect is investigated for 18V Lateral-diffused MOS (LDMOS) based on 0.18µm process technology. The SEB mechanism is revealed that parasitic bipolar turn-on and the self-maintaining induced by avalanche ionization. At early stage, heavy ion induced ionized holes inject into the P-body (PB) region, giving rise to the parasitic bipolar turn-on. Electrons from the source are allowed to flow to the drain, and exert modulation on electric field profile. Due to field peak formed at drain side, avalanche ionization induced holes provide a supplement for base current of the parasitic bipolar. A positive feedback of holes between the parasitic bipolar and avalanche is responsible for the SEB effect. Multi-implantation radiation hardening technology is proposed to reduce PB region resistance and suppress parasitic bipolar opened, while eliminate the impact on threshold voltage.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Single Event Burnout Effect for 18V LDMOS Based on 0.18µm Process Technology
In this paper, single event burnout (SEB) effect is investigated for 18V Lateral-diffused MOS (LDMOS) based on 0.18µm process technology. The SEB mechanism is revealed that parasitic bipolar turn-on and the self-maintaining induced by avalanche ionization. At early stage, heavy ion induced ionized holes inject into the P-body (PB) region, giving rise to the parasitic bipolar turn-on. Electrons from the source are allowed to flow to the drain, and exert modulation on electric field profile. Due to field peak formed at drain side, avalanche ionization induced holes provide a supplement for base current of the parasitic bipolar. A positive feedback of holes between the parasitic bipolar and avalanche is responsible for the SEB effect. Multi-implantation radiation hardening technology is proposed to reduce PB region resistance and suppress parasitic bipolar opened, while eliminate the impact on threshold voltage.