Anissa Djellid-Ouar, Guy Cathebras, Frédéric Bancel
{"title":"电源电压故障对CMOS电路的影响","authors":"Anissa Djellid-Ouar, Guy Cathebras, Frédéric Bancel","doi":"10.1109/DTIS.2006.1708651","DOIUrl":null,"url":null,"abstract":"Among the attacks applied on secure circuits, fault injection techniques consist in the use of a combination of environmental conditions that induce computational errors in the chip that can leak protected informations. The purpose of our study is to build an accurate model able to describe the behaviour of CMOS circuits in presence of deliberated short supply voltage variations. This behaviour depends strongly on the basic gates (combinational logic, registers...) that make up the circuit. In this paper, we show why D-flip-flop are resistant to power supply glitches occurring between clock transitions and we propose an approach to evaluate the basic elements sensitivities towards faults generated by power glitches. Our aimed model will consequently be dependent on this sensitivity","PeriodicalId":399250,"journal":{"name":"International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Supply voltage glitches effects on CMOS circuits\",\"authors\":\"Anissa Djellid-Ouar, Guy Cathebras, Frédéric Bancel\",\"doi\":\"10.1109/DTIS.2006.1708651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the attacks applied on secure circuits, fault injection techniques consist in the use of a combination of environmental conditions that induce computational errors in the chip that can leak protected informations. The purpose of our study is to build an accurate model able to describe the behaviour of CMOS circuits in presence of deliberated short supply voltage variations. This behaviour depends strongly on the basic gates (combinational logic, registers...) that make up the circuit. In this paper, we show why D-flip-flop are resistant to power supply glitches occurring between clock transitions and we propose an approach to evaluate the basic elements sensitivities towards faults generated by power glitches. Our aimed model will consequently be dependent on this sensitivity\",\"PeriodicalId\":399250,\"journal\":{\"name\":\"International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS.2006.1708651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2006.1708651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Among the attacks applied on secure circuits, fault injection techniques consist in the use of a combination of environmental conditions that induce computational errors in the chip that can leak protected informations. The purpose of our study is to build an accurate model able to describe the behaviour of CMOS circuits in presence of deliberated short supply voltage variations. This behaviour depends strongly on the basic gates (combinational logic, registers...) that make up the circuit. In this paper, we show why D-flip-flop are resistant to power supply glitches occurring between clock transitions and we propose an approach to evaluate the basic elements sensitivities towards faults generated by power glitches. Our aimed model will consequently be dependent on this sensitivity