基于支持向量机的皮肤病变恶性黑色素瘤和良性痣分类

M. A. Mahmoud, Adel Al-Jumaily, Y. Maali, K. Anam
{"title":"基于支持向量机的皮肤病变恶性黑色素瘤和良性痣分类","authors":"M. A. Mahmoud, Adel Al-Jumaily, Y. Maali, K. Anam","doi":"10.1109/CIMSIM.2013.45","DOIUrl":null,"url":null,"abstract":"This paper proposes an automated system for discrimination between melanocytic nevi and malignantmelanoma. The proposed system used a number of featuresextracted from histo-pathological images of skin lesionsthrough image processing techniques which consisted of aspatially adaptive color median filter for filtering and a Kmeansclustering for segmentation. The extracted featureswere reduced by using sequential feature selection and thenclassified by using support vector machine (SVM) to diagnoseskin biopsies from patients as either malignant melanoma orbenign nevi. The proposed system was able to achieve a goodresult with classification accuracy of 88.9%, sensitivity of87.5% and specificity of 100%.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based on Support Vector Machine\",\"authors\":\"M. A. Mahmoud, Adel Al-Jumaily, Y. Maali, K. Anam\",\"doi\":\"10.1109/CIMSIM.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automated system for discrimination between melanocytic nevi and malignantmelanoma. The proposed system used a number of featuresextracted from histo-pathological images of skin lesionsthrough image processing techniques which consisted of aspatially adaptive color median filter for filtering and a Kmeansclustering for segmentation. The extracted featureswere reduced by using sequential feature selection and thenclassified by using support vector machine (SVM) to diagnoseskin biopsies from patients as either malignant melanoma orbenign nevi. The proposed system was able to achieve a goodresult with classification accuracy of 88.9%, sensitivity of87.5% and specificity of 100%.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种自动识别黑素细胞痣和恶性黑色素瘤的系统。该系统通过图像处理技术从皮肤病变的组织病理图像中提取许多特征,其中包括用于滤波的空间自适应颜色中值滤波器和用于分割的kmeans聚类。通过序列特征选择对提取的特征进行约简,然后使用支持向量机(SVM)进行分类,将患者的皮肤活检诊断为恶性黑色素瘤或良性痣。该系统的分类准确率为88.9%,灵敏度为87.5%,特异性为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based on Support Vector Machine
This paper proposes an automated system for discrimination between melanocytic nevi and malignantmelanoma. The proposed system used a number of featuresextracted from histo-pathological images of skin lesionsthrough image processing techniques which consisted of aspatially adaptive color median filter for filtering and a Kmeansclustering for segmentation. The extracted featureswere reduced by using sequential feature selection and thenclassified by using support vector machine (SVM) to diagnoseskin biopsies from patients as either malignant melanoma orbenign nevi. The proposed system was able to achieve a goodresult with classification accuracy of 88.9%, sensitivity of87.5% and specificity of 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1