SCR反硝化系统分数阶pi - λ dμ参数的最优控制研究

Shan Gao, Jing Xu, Wei Dan, Qixian Li, Yu Huang
{"title":"SCR反硝化系统分数阶pi - λ dμ参数的最优控制研究","authors":"Shan Gao, Jing Xu, Wei Dan, Qixian Li, Yu Huang","doi":"10.1109/IAI53119.2021.9619444","DOIUrl":null,"url":null,"abstract":"Selective Catalytic Reduction (SCR) is the most widely used and most mature denitrification technology in thermal power plants in my country. In view of the strong interference characteristics in the SCR denitrification system, this paper applies the fractional order PIλDμ controller to the outer loop control of the denitrification system. Because the fractional order PIλDμ controller has many parameters and the adjustment process is complicated and cumbersome, this paper proposes an Optuna optimization algorithm with CMA-ES sampler. This algorithm introduces the sampling principle of the CMA-ES algorithm into Optuna, and uses the strong parameter search ability of CMA-ES to determine the parameters of the fractional order PIλDμ controller. The experimental results show that the fractional order PIλDμ controller has good tracking, anti-interference and robustness in the denitrification control system of thermal power plants.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on Optimal Control of Fractional Order PIλDμ Parameters of SCR Denitrification System\",\"authors\":\"Shan Gao, Jing Xu, Wei Dan, Qixian Li, Yu Huang\",\"doi\":\"10.1109/IAI53119.2021.9619444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective Catalytic Reduction (SCR) is the most widely used and most mature denitrification technology in thermal power plants in my country. In view of the strong interference characteristics in the SCR denitrification system, this paper applies the fractional order PIλDμ controller to the outer loop control of the denitrification system. Because the fractional order PIλDμ controller has many parameters and the adjustment process is complicated and cumbersome, this paper proposes an Optuna optimization algorithm with CMA-ES sampler. This algorithm introduces the sampling principle of the CMA-ES algorithm into Optuna, and uses the strong parameter search ability of CMA-ES to determine the parameters of the fractional order PIλDμ controller. The experimental results show that the fractional order PIλDμ controller has good tracking, anti-interference and robustness in the denitrification control system of thermal power plants.\",\"PeriodicalId\":106675,\"journal\":{\"name\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI53119.2021.9619444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

选择性催化还原技术(Selective Catalytic Reduction, SCR)是我国火电厂中应用最广泛、最成熟的脱硝技术。针对可控硅脱硝系统存在的强干扰特性,本文将分数阶PIλDμ控制器应用于脱硝系统的外环控制。针对分数阶PIλDμ控制器参数多、调整过程复杂繁琐的特点,提出了一种基于CMA-ES采样器的Optuna优化算法。该算法将CMA-ES算法的采样原理引入Optuna中,利用CMA-ES强大的参数搜索能力来确定分数阶pi - λ dμ控制器的参数。实验结果表明,分数阶PIλDμ控制器在火电厂脱硝控制系统中具有良好的跟踪性、抗干扰性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Optimal Control of Fractional Order PIλDμ Parameters of SCR Denitrification System
Selective Catalytic Reduction (SCR) is the most widely used and most mature denitrification technology in thermal power plants in my country. In view of the strong interference characteristics in the SCR denitrification system, this paper applies the fractional order PIλDμ controller to the outer loop control of the denitrification system. Because the fractional order PIλDμ controller has many parameters and the adjustment process is complicated and cumbersome, this paper proposes an Optuna optimization algorithm with CMA-ES sampler. This algorithm introduces the sampling principle of the CMA-ES algorithm into Optuna, and uses the strong parameter search ability of CMA-ES to determine the parameters of the fractional order PIλDμ controller. The experimental results show that the fractional order PIλDμ controller has good tracking, anti-interference and robustness in the denitrification control system of thermal power plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on self-maintenance strategy of CNC machine tools based on case-based reasoning An Improved RRT* Algorithm Combining Motion Constraint and Artificial Potential Field for Robot-Assisted Flexible Needle Insertion in 3D Environment Relative Stability Analysis Method of Systems Based on Goal Seek Operation Optimization of Park Integrated Energy System Considering the Response of Electricity and Cooling Demand Privacy-Preserving Push-sum Average Consensus Algorithm over Directed Graph Via State Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1