Youkai Chen, F. Zhu, H. Liao, Wei Zhang, Sheng Liu
{"title":"Ni包覆单壁碳纳米管压缩变形研究","authors":"Youkai Chen, F. Zhu, H. Liao, Wei Zhang, Sheng Liu","doi":"10.1109/EPTC.2012.6507178","DOIUrl":null,"url":null,"abstract":"Mechanical behaviors of single-walled carbon nanotube (SWCNT) and Ni-coated single-walled carbon nanotube (SWCNT-Ni) were investigated by using molecular dynamics (MD) simulation method. From these results of molecular dynamics simulation for two models of SWCNT and SWCNT-Ni, it was found that the Young's Modulus of SWCNT was higher than that of SWCNT-Ni, and failure stress and failure strain of SWCNT were also lower than that of SWCNT-Ni at same temperature point of 300K, 500K, and 700K. In order to understand compressing behaviors of different temperature, two different molecular models of SWCNT and SWCNT-Ni were analyzed at 300K, 500K and 700K respectively, and it was revealed that temperature fluctuation could also change the Young's Modulus, critical stress, and critical strain. In this work, it was very clear that nickel atoms on surface of SWCNT-Ni could retard local buckling at the processing of compressing. Coating nickel atoms on surface of SWCNT could improve some mechanical properties of SWCNT.","PeriodicalId":431312,"journal":{"name":"2012 IEEE 14th Electronics Packaging Technology Conference (EPTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressing deformation investigation of single-walled carbon nanotube coated with Ni\",\"authors\":\"Youkai Chen, F. Zhu, H. Liao, Wei Zhang, Sheng Liu\",\"doi\":\"10.1109/EPTC.2012.6507178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical behaviors of single-walled carbon nanotube (SWCNT) and Ni-coated single-walled carbon nanotube (SWCNT-Ni) were investigated by using molecular dynamics (MD) simulation method. From these results of molecular dynamics simulation for two models of SWCNT and SWCNT-Ni, it was found that the Young's Modulus of SWCNT was higher than that of SWCNT-Ni, and failure stress and failure strain of SWCNT were also lower than that of SWCNT-Ni at same temperature point of 300K, 500K, and 700K. In order to understand compressing behaviors of different temperature, two different molecular models of SWCNT and SWCNT-Ni were analyzed at 300K, 500K and 700K respectively, and it was revealed that temperature fluctuation could also change the Young's Modulus, critical stress, and critical strain. In this work, it was very clear that nickel atoms on surface of SWCNT-Ni could retard local buckling at the processing of compressing. Coating nickel atoms on surface of SWCNT could improve some mechanical properties of SWCNT.\",\"PeriodicalId\":431312,\"journal\":{\"name\":\"2012 IEEE 14th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 14th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2012.6507178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2012.6507178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressing deformation investigation of single-walled carbon nanotube coated with Ni
Mechanical behaviors of single-walled carbon nanotube (SWCNT) and Ni-coated single-walled carbon nanotube (SWCNT-Ni) were investigated by using molecular dynamics (MD) simulation method. From these results of molecular dynamics simulation for two models of SWCNT and SWCNT-Ni, it was found that the Young's Modulus of SWCNT was higher than that of SWCNT-Ni, and failure stress and failure strain of SWCNT were also lower than that of SWCNT-Ni at same temperature point of 300K, 500K, and 700K. In order to understand compressing behaviors of different temperature, two different molecular models of SWCNT and SWCNT-Ni were analyzed at 300K, 500K and 700K respectively, and it was revealed that temperature fluctuation could also change the Young's Modulus, critical stress, and critical strain. In this work, it was very clear that nickel atoms on surface of SWCNT-Ni could retard local buckling at the processing of compressing. Coating nickel atoms on surface of SWCNT could improve some mechanical properties of SWCNT.