复杂性控制时间序列预测器的遗传算法设计

P. Gallant, G. Aitken
{"title":"复杂性控制时间序列预测器的遗传算法设计","authors":"P. Gallant, G. Aitken","doi":"10.1109/NNSP.2003.1318076","DOIUrl":null,"url":null,"abstract":"A genetic algorithm that designs artificial neural networks for time-series prediction encodes the structure and the weight magnitudes in a novel genome representation. This allows the genetic algorithm to perform training and complexity control simultaneously, thus directly addressing the problems of generalization and overfitting of data in the evolution of the network. Modified genetic crossover and modified mutation operations are introduced to increase population diversity and improve speed of convergence. Well performing neural networks were evolved automatically for time-series prediction of atmospherically-perturbed light waves in adaptive optics and the time series used in the 1998 Leuven predictor competition.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Genetic algorithm design of complexity-controlled time-series predictors\",\"authors\":\"P. Gallant, G. Aitken\",\"doi\":\"10.1109/NNSP.2003.1318076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm that designs artificial neural networks for time-series prediction encodes the structure and the weight magnitudes in a novel genome representation. This allows the genetic algorithm to perform training and complexity control simultaneously, thus directly addressing the problems of generalization and overfitting of data in the evolution of the network. Modified genetic crossover and modified mutation operations are introduced to increase population diversity and improve speed of convergence. Well performing neural networks were evolved automatically for time-series prediction of atmospherically-perturbed light waves in adaptive optics and the time series used in the 1998 Leuven predictor competition.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一种设计用于时间序列预测的人工神经网络的遗传算法编码了一种新的基因组表示的结构和权重大小。这使得遗传算法可以同时进行训练和复杂性控制,从而直接解决网络进化中数据的泛化和过拟合问题。引入改良遗传交叉和改良突变操作,增加种群多样性,提高收敛速度。在自适应光学和1998年鲁汶预测器竞赛中使用的时间序列中,自动发展了性能良好的神经网络,用于大气扰动光波的时间序列预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic algorithm design of complexity-controlled time-series predictors
A genetic algorithm that designs artificial neural networks for time-series prediction encodes the structure and the weight magnitudes in a novel genome representation. This allows the genetic algorithm to perform training and complexity control simultaneously, thus directly addressing the problems of generalization and overfitting of data in the evolution of the network. Modified genetic crossover and modified mutation operations are introduced to increase population diversity and improve speed of convergence. Well performing neural networks were evolved automatically for time-series prediction of atmospherically-perturbed light waves in adaptive optics and the time series used in the 1998 Leuven predictor competition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1