使用点云进行2D视频压缩的基于图像的渲染

H. Golestani, Thibaut Meyer, M. Wien
{"title":"使用点云进行2D视频压缩的基于图像的渲染","authors":"H. Golestani, Thibaut Meyer, M. Wien","doi":"10.1109/PCS.2018.8456267","DOIUrl":null,"url":null,"abstract":"The main idea of this paper is to extract the 3D scene geometry for the observed scene and use it for synthesizing a more precise prediction using Image-Based Rendering (IBR) for motion compensation in a hybrid coding scheme. The proposed method first extracts camera parameters using Structure from Motion (SfM). Then, a Patch-based Multi-View Stereo (PMVS) technique is employed to generate the scene Point-Cloud (PC) only from already decoded key-frames. Since the PC could be really sparse in poorly reconstructed regions, a depth expansion mechanism is also used. This 3D information helps to properly warp textures from the key-frames to the target frame. This IBR-based prediction is then used as an additional reference for motion compensation. In this way, the encoder can choose between the rendered prediction and the regular reference pictures through a rate- distortion optimization. On average, the simulation results show about 2.16% bitrate reduction compared to the reference HEVC implementation, for tested dynamic and static scene video sequences.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image-Based Rendering using Point Cloud for 2D Video Compression\",\"authors\":\"H. Golestani, Thibaut Meyer, M. Wien\",\"doi\":\"10.1109/PCS.2018.8456267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main idea of this paper is to extract the 3D scene geometry for the observed scene and use it for synthesizing a more precise prediction using Image-Based Rendering (IBR) for motion compensation in a hybrid coding scheme. The proposed method first extracts camera parameters using Structure from Motion (SfM). Then, a Patch-based Multi-View Stereo (PMVS) technique is employed to generate the scene Point-Cloud (PC) only from already decoded key-frames. Since the PC could be really sparse in poorly reconstructed regions, a depth expansion mechanism is also used. This 3D information helps to properly warp textures from the key-frames to the target frame. This IBR-based prediction is then used as an additional reference for motion compensation. In this way, the encoder can choose between the rendered prediction and the regular reference pictures through a rate- distortion optimization. On average, the simulation results show about 2.16% bitrate reduction compared to the reference HEVC implementation, for tested dynamic and static scene video sequences.\",\"PeriodicalId\":433667,\"journal\":{\"name\":\"2018 Picture Coding Symposium (PCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2018.8456267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要思想是提取观察场景的三维场景几何形状,并使用基于图像的渲染(IBR)在混合编码方案中进行运动补偿,从而合成更精确的预测。该方法首先利用SfM (Structure from Motion)提取相机参数。然后,采用基于patch的多视点立体(PMVS)技术,仅从已解码的关键帧生成场景点云(PC)。由于PC在重建较差的区域可能非常稀疏,因此还使用了深度扩展机制。这个3D信息有助于正确地将纹理从关键帧扭曲到目标帧。这种基于ibr的预测然后用作运动补偿的附加参考。这样,编码器可以通过率失真优化在渲染的预测图像和常规参考图像之间进行选择。对于测试的动态和静态场景视频序列,仿真结果显示,与参考HEVC实现相比,平均比特率降低了2.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image-Based Rendering using Point Cloud for 2D Video Compression
The main idea of this paper is to extract the 3D scene geometry for the observed scene and use it for synthesizing a more precise prediction using Image-Based Rendering (IBR) for motion compensation in a hybrid coding scheme. The proposed method first extracts camera parameters using Structure from Motion (SfM). Then, a Patch-based Multi-View Stereo (PMVS) technique is employed to generate the scene Point-Cloud (PC) only from already decoded key-frames. Since the PC could be really sparse in poorly reconstructed regions, a depth expansion mechanism is also used. This 3D information helps to properly warp textures from the key-frames to the target frame. This IBR-based prediction is then used as an additional reference for motion compensation. In this way, the encoder can choose between the rendered prediction and the regular reference pictures through a rate- distortion optimization. On average, the simulation results show about 2.16% bitrate reduction compared to the reference HEVC implementation, for tested dynamic and static scene video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1