神经网络热建模在普朗克航天任务中的应用

C. Leroy, J. Bernard, J. Trouilhet
{"title":"神经网络热建模在普朗克航天任务中的应用","authors":"C. Leroy, J. Bernard, J. Trouilhet","doi":"10.1109/NNSP.2003.1318014","DOIUrl":null,"url":null,"abstract":"The European Space Agency Planck satellite will be launched in 2007. The goal of this mission is to perform a complete survey of the cosmic microwave background. The high frequency instrument (HFI) on-board Planck would perform all-sky mapping at sub-millimetre and millimetre wavelengths using bolometers cooled at very low temperatures. We have developed a new method able to predict precisely the thermal behaviour of the instrument in order to extract instrumental additive signals due to self-emission by the various cryogenic stages. This article presents a synthesis of the results obtained with neural methods for this modelling problem.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal modelling with neural network applied to Planck space mission\",\"authors\":\"C. Leroy, J. Bernard, J. Trouilhet\",\"doi\":\"10.1109/NNSP.2003.1318014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The European Space Agency Planck satellite will be launched in 2007. The goal of this mission is to perform a complete survey of the cosmic microwave background. The high frequency instrument (HFI) on-board Planck would perform all-sky mapping at sub-millimetre and millimetre wavelengths using bolometers cooled at very low temperatures. We have developed a new method able to predict precisely the thermal behaviour of the instrument in order to extract instrumental additive signals due to self-emission by the various cryogenic stages. This article presents a synthesis of the results obtained with neural methods for this modelling problem.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧洲航天局的普朗克卫星将于2007年发射。这次任务的目标是对宇宙微波背景进行全面调查。普朗克搭载的高频仪器(HFI)将使用在极低温度下冷却的辐射热计,在亚毫米和毫米波长下进行全天测绘。我们已经开发了一种新的方法,能够准确地预测仪器的热行为,以便提取由于各种低温阶段自发射的仪器加性信号。本文综合介绍了用神经方法对这一建模问题所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal modelling with neural network applied to Planck space mission
The European Space Agency Planck satellite will be launched in 2007. The goal of this mission is to perform a complete survey of the cosmic microwave background. The high frequency instrument (HFI) on-board Planck would perform all-sky mapping at sub-millimetre and millimetre wavelengths using bolometers cooled at very low temperatures. We have developed a new method able to predict precisely the thermal behaviour of the instrument in order to extract instrumental additive signals due to self-emission by the various cryogenic stages. This article presents a synthesis of the results obtained with neural methods for this modelling problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1