{"title":"用于与人形机器人交互的实时视觉系统","authors":"A. Ude, T. Shibata, C. Atkeson","doi":"10.1109/IROS.2001.976258","DOIUrl":null,"url":null,"abstract":"We describe a real-time visual system that enables a humanoid robot to learn from and interact with humans. The core of the visual system is a probabilistic tracker that uses shape and color information to find relevant objects in the scene. Multiscale representations, windowing and masking are employed to accelerate the data processing. The perception system is directly coupled with the motor control system of our humanoid robot DB. We present an example of on-line interaction with a humanoid robot: mimicking of human hand motion. The generation of humanoid robot motion based on the human motion is accomplished in real-time. The study is supported by experimental results on DB.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Real-time visual system for interaction with a humanoid robot\",\"authors\":\"A. Ude, T. Shibata, C. Atkeson\",\"doi\":\"10.1109/IROS.2001.976258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a real-time visual system that enables a humanoid robot to learn from and interact with humans. The core of the visual system is a probabilistic tracker that uses shape and color information to find relevant objects in the scene. Multiscale representations, windowing and masking are employed to accelerate the data processing. The perception system is directly coupled with the motor control system of our humanoid robot DB. We present an example of on-line interaction with a humanoid robot: mimicking of human hand motion. The generation of humanoid robot motion based on the human motion is accomplished in real-time. The study is supported by experimental results on DB.\",\"PeriodicalId\":319679,\"journal\":{\"name\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2001.976258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time visual system for interaction with a humanoid robot
We describe a real-time visual system that enables a humanoid robot to learn from and interact with humans. The core of the visual system is a probabilistic tracker that uses shape and color information to find relevant objects in the scene. Multiscale representations, windowing and masking are employed to accelerate the data processing. The perception system is directly coupled with the motor control system of our humanoid robot DB. We present an example of on-line interaction with a humanoid robot: mimicking of human hand motion. The generation of humanoid robot motion based on the human motion is accomplished in real-time. The study is supported by experimental results on DB.