半机械人血管内置管过程中介入者手部运动的深度多模态网络分类和识别

O. Omisore, Wenjing Du, Wenke Duan, Thanh-Nhon Do, Rita Orji, Lei Wang
{"title":"半机械人血管内置管过程中介入者手部运动的深度多模态网络分类和识别","authors":"O. Omisore, Wenjing Du, Wenke Duan, Thanh-Nhon Do, Rita Orji, Lei Wang","doi":"10.1109/CASE49439.2021.9551465","DOIUrl":null,"url":null,"abstract":"Recent insights from human-robot intelligence and deep learning raise hope towards task-specific autonomy in robotic intravascular coronary interventions. However, lack of learning-based methods for characterizing the interventionists' kinesthetic data hinders the drive for shared control and robotic autonomy during cyborg catheterization. In this study, a deep multimodal network model is proposed for classification and recognition of interventionists' hand movements during cyborg intravascular catheterization. The model has two modules for extracting salient features in electromyography signal datasets, and classification of hand motions made during intravascular catheterization procedures. Network training and evaluation observed for in-vitro and in-vivo datasets obtained from trained novice subjects and expert with about 5 years of experience in percutaneous coronary interventions. Performance evaluation shows the learning model could classify interventionists' hand movements accurately in manual and robot-assisted navigations, respectively. This study is suggested to further stimulate the development of appropriate skill level assessments towards cyborg catheterization for cardiac interventions.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Deep Multimodal Network for Classification and Identification of Interventionists' Hand Motions during Cyborg Intravascular Catheterization\",\"authors\":\"O. Omisore, Wenjing Du, Wenke Duan, Thanh-Nhon Do, Rita Orji, Lei Wang\",\"doi\":\"10.1109/CASE49439.2021.9551465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent insights from human-robot intelligence and deep learning raise hope towards task-specific autonomy in robotic intravascular coronary interventions. However, lack of learning-based methods for characterizing the interventionists' kinesthetic data hinders the drive for shared control and robotic autonomy during cyborg catheterization. In this study, a deep multimodal network model is proposed for classification and recognition of interventionists' hand movements during cyborg intravascular catheterization. The model has two modules for extracting salient features in electromyography signal datasets, and classification of hand motions made during intravascular catheterization procedures. Network training and evaluation observed for in-vitro and in-vivo datasets obtained from trained novice subjects and expert with about 5 years of experience in percutaneous coronary interventions. Performance evaluation shows the learning model could classify interventionists' hand movements accurately in manual and robot-assisted navigations, respectively. This study is suggested to further stimulate the development of appropriate skill level assessments towards cyborg catheterization for cardiac interventions.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人机智能和深度学习的最新见解为机器人血管内冠状动脉介入治疗的特定任务自主性带来了希望。然而,缺乏基于学习的方法来表征干预者的动觉数据,阻碍了在机器人导尿过程中共享控制和机器人自主的动力。在这项研究中,提出了一个深度多模态网络模型,用于分类和识别介入者在半机械人血管内置管过程中的手部运动。该模型有两个模块,用于提取肌电信号数据集的显著特征,以及对血管内插管过程中手部运动的分类。从训练有素的新手受试者和具有大约5年经皮冠状动脉介入治疗经验的专家那里获得的体外和体内数据集观察到网络训练和评估。性能评估表明,该学习模型能够准确分类干预者在手动导航和机器人辅助导航中的手部动作。这项研究建议进一步刺激适当的技能水平评估的发展,以机器人导管心脏介入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep Multimodal Network for Classification and Identification of Interventionists' Hand Motions during Cyborg Intravascular Catheterization
Recent insights from human-robot intelligence and deep learning raise hope towards task-specific autonomy in robotic intravascular coronary interventions. However, lack of learning-based methods for characterizing the interventionists' kinesthetic data hinders the drive for shared control and robotic autonomy during cyborg catheterization. In this study, a deep multimodal network model is proposed for classification and recognition of interventionists' hand movements during cyborg intravascular catheterization. The model has two modules for extracting salient features in electromyography signal datasets, and classification of hand motions made during intravascular catheterization procedures. Network training and evaluation observed for in-vitro and in-vivo datasets obtained from trained novice subjects and expert with about 5 years of experience in percutaneous coronary interventions. Performance evaluation shows the learning model could classify interventionists' hand movements accurately in manual and robot-assisted navigations, respectively. This study is suggested to further stimulate the development of appropriate skill level assessments towards cyborg catheterization for cardiac interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1