Andrea Orlandini, M. Suriano, A. Cesta, Alberto Finzi
{"title":"安全关键规划的控制器综合","authors":"Andrea Orlandini, M. Suriano, A. Cesta, Alberto Finzi","doi":"10.1109/ICTAI.2013.54","DOIUrl":null,"url":null,"abstract":"Safety critical planning and execution is a crucial issue in autonomous systems. This paper proposes a methodology for controller synthesis suitable for timeline-based planning and demonstrates its effectiveness in a space domain where robustness of execution is a crucial property. The proposed approach uses Timed Game Automata (TGA) for formal modeling and the UPPAAL-TIGA model checker for controllers synthesis. An experimental evaluation is performed using a real-world control system.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Controller Synthesis for Safety Critical Planning\",\"authors\":\"Andrea Orlandini, M. Suriano, A. Cesta, Alberto Finzi\",\"doi\":\"10.1109/ICTAI.2013.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety critical planning and execution is a crucial issue in autonomous systems. This paper proposes a methodology for controller synthesis suitable for timeline-based planning and demonstrates its effectiveness in a space domain where robustness of execution is a crucial property. The proposed approach uses Timed Game Automata (TGA) for formal modeling and the UPPAAL-TIGA model checker for controllers synthesis. An experimental evaluation is performed using a real-world control system.\",\"PeriodicalId\":140309,\"journal\":{\"name\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 25th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2013.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety critical planning and execution is a crucial issue in autonomous systems. This paper proposes a methodology for controller synthesis suitable for timeline-based planning and demonstrates its effectiveness in a space domain where robustness of execution is a crucial property. The proposed approach uses Timed Game Automata (TGA) for formal modeling and the UPPAAL-TIGA model checker for controllers synthesis. An experimental evaluation is performed using a real-world control system.